Concentração de Fósforo e Produtividade de Milho decorrentes a Adubação com Lodo de Esgoto (1).

Morgana Scaramussa Gonçalves⁽²⁾; Heitor Rodrigues⁽³⁾; Afonso Zucolotto Venturin⁽⁴⁾; Aline Azevedo Nazário⁽⁵⁾; Marjorie Freitas Spadeto⁽⁶⁾; Giovanni de Oliveira Garcia⁽⁷⁾.

(1) Trabalho executado com recursos do CNPq

(2) Estudante de Graduação; Universidade Federal do Espírito Santo; Alegre, Espírito Santo; Endereço eletrônico: morganascg@hotmail.com; (3) Estudante de mestrado; Universidade Federal do Espírito Santo; Alegre, ES; Endereço eletrônico: heitor_pancas@hotmail.com; (4) Estudante de Graduação; Universidade Federal do Espírito Santo; Alegre, ES; Endereço eletrônico: afonsozv@hotmail.com; (5) Estudante de doutorado; Universidade Estadual de Campinas; Campinas, SP; Endereço eletrônico: aline.a.n@hotmail.com; (6) Estudante de Graduação; Universidade Federal do Espírito Santo; Alegre, ES; Endereço eletrônico: aline.a.n@hotmail.com; (7) Professor Orientador; Universidade Federal do Espírito Santo; Alegre, ES; Endereço eletrônico: giovanni.garcia@ufes.br.

RESUMO: O lodo de esgoto doméstico é um subproduto obtido a partir do tratamento do esgoto doméstico e sua disposição final ainda é um fator a ser definido. Considerando a agricultura como um grande potencial da reutilização de resíduos os quais pode ser fontes de nutrientes as plantas foi pesquisado nesse subprojeto a utilização do lodo no cultivo da cultura do milho avaliando a concentração de fósforo no solo e produção de sementes da cultura. O experimento foi montando no delineamento inteiramente casualizado no esquema fatorial 3X5 (três tratamentos e cinco períodos de Os tratamentos foram constituídos na comparação da adubação mineral com aplicação de lodo de esgoto e lodo de esgoto com suplementação mineral. As avaliações foram feitas em cinco épocas sendo antes do plantio, na fase de crescimento da cultura, floração, enchimento de grãos e no período de colheita. O trabalho conduzido mostrou resultados positivos em relação a utilização do subproduto, visto que propiciou melhoras no aporte de fósforo no solo e incremento na produtividade de sementes de milho.

Termos de indexação: Nitrogênio e Zea mays.

INTRODUÇÃO

A crescente demanda da sociedade pela manutenção e melhoria das condições ambientais tem exigido das autoridades e das empresas públicas e privadas atividades capazes compatibilizar o desenvolvimento, às limitações da exploração de recursos naturais.

Os estudos com lodo de esgoto, subproduto gerado nas estações de tratamento de esgotos urbanos indicam que ele possui alguns nutrientes essenciais às plantas, é rico em matéria orgânica, e atua como um condicionador do solo, melhorando sua estrutura. Quando tratado e processado, o lodo o nome de biossólidos e características que permitem sua utilização agrícola de maneira racional e ambientalmente segura (Barbosa, 2006).

Sob o ponto de vista ambiental, a reciclagem agrícola do lodo de esgoto é uma alternativa conveniente, propiciando economia de energia e de reservas naturais, diminuindo as necessidades de fertilização mineral.

O lodo de esgoto tem apresentado bons resultados como fertilizante para diversas culturas, dentre elas o milho (Silva, 1997). As populações de milho são importantes por apresentarem elevado potencial de adaptação às condições ambientais específicas (ALBUQUERQUE, et al., 2003) e se destinar para o consumo humano e a alimentação de animais.

Devido à falta de conhecimento específico na região aliada à expansão das áreas agricultáveis, principalmente na agricultura familiar, este trabalho tem o objetivo elaborar índices técnicos científicos de utilização agrícola de lodo de esgoto doméstico na cultura do milho avaliando a concentração de fósforo no solo em diferentes períodos de avaliação, decorrentes da aplicação de lodo de doméstico provenientes da estação de esgoto doméstico de Pacotuba.

MATERIAL E MÉTODOS

O trabalho foi realizado no Centro de Ciências Agrárias da Universidade Federal do Espírito Santo, conduzido em vasos com capacidade de 15 litros com o cultivar comercial de milho PL 6880, sendo semeadas cinco sementes por vaso e efetuado o desbaste aos quinze dias após plantio (DAP) deixando apenas uma planta por vaso.

lâmina de irrigação equivalente evapotranspiração real da cultura (ETr) calculada, em função da ET₀, estimada por meio do método Padrão FAO 56 Penman Monteith, corrigida para os valores de Kc da cultura e do coeficiente de umidade do solo (Ks), conforme descrito por Bernardo et al. (2005).

Os vasos foram preenchidos com Argissolo Vermelho Escuro o qual foi caracterizado quanto à fertilidade e retenção de água (**Tabela 1**).

Tabela 1- Valores médios das características químicas do solo utilizado no preenchimento dos vasos na montagem do experimento com o lodo de esgoto.

<u> </u>	
Características	Valor
Ph	5,7
Fósforo (mg dm ⁻³)	7
Potássio (mg dm ⁻³)	35
Cálcio (cmmolc dm ⁻³)	1,8
Magnésio (cmmolc dm ⁻³)	0,9
Sódio (mg dm ⁻³)	32
Alumínio (cmmolc dm ⁻³)	0
H+AL (cmmolc dm ⁻³)	2
CTC total (cmmolc dm ⁻³)	4,9
CTC efetiva (cmmolc dm ⁻³)	2,9
Saturação por bases (%)	59,4
Relação cálcio/magnésio	2
Relação cálcio/potássio	20,1
Relação magnésio/potássio	10
Soma de bases (cmmolc dm ⁻³)	2,9

Tratamentos e amostragens

O experimento constitui-se de três tratamentos (adubação normal, adubação nitrogenada a base de lodo de esgoto no plantio e adubação nitrogenada a base de lodo de esgoto no plantio com suplementação mineral) e cinco épocas de avaliação (antes do plantio, crescimento vegetativo, floração, enchimento de grãos e colheita) com cinco repetições.

O lodo utilizado no experimento foi proveniente da estação de tratamento de esgoto de Pacotuba e a dose aplicada foi determinada em função da concentração de nitrogênio presente no lodo (**Tabela 2**) e a requerida pela cultura (PREZOTTI, et al., 2007).

$$Qs = \frac{Nrec}{Ck \times TR \times Tm}, \quad \text{onde:}$$

Q_s= Quantidade de substrato (t ha⁻¹) T_m= percentual de mineralização (0,5) C_k= concentração de N do substrato (g kg⁻¹) TR= taxa de recuperação da cultura (0,7) N_{rec}= dose de N recomendada (kg ha ano⁻¹)

O procedimento adotado constituiu em recolher amostras de 100 gramas homogeneizada de cada vaso e submetida à análise em laboratório, para determinar as concentrações fósforo. E a produção de grãos foi estimada por meio de pesagem dos mesmos, seguidos da debulha das espigas de cada vaso.

Tabela 2- Valores médios das características químicas do lodo de esgoto utilizado no experimento.

Características	Valor
рН	6,1
Nitrogênio (dag kg ⁻¹)	1,1
Fósforo (dag kg ⁻¹)	0,4
Potássio (dag kg ⁻¹)	0,1
Cálcio (dag kg ⁻¹)	0,8
Magnésio (dag kg ⁻¹)	0,3
Enxofre (dag kg ⁻¹)	0,6
Carbono (dag kg ⁻¹)	8,0
Matéria orgânica (dag kg ⁻¹)	13,0
Zinco (mg kg ⁻¹)	465,3
Ferro (mg kg ⁻¹)	14130,0
Manganês (mg kg ⁻¹)	118,5
Cobre (mg kg ⁻¹)	73,3
Boro (mg kg ⁻¹)	3,0

Análise estatística

O delineamento experimental utilizado no experimento foi o inteiramente casualizado com três tratamentos e cinco épocas de avaliação.

A análise estatística dos dados observados foi feita no software SAEG com base no teste de tukey adotando um nível de 5% de probabilidade para todos os dados.

RESULTADOS E DISCUSSÃO

Na **tabela 3** estão apresentados os resultados da análise estatística referente às concentrações de fósforo em cinco períodos de avaliação.

Observando as médias em coluna (letras maiúsculas), todos os tratamentos obtiveram diferenças significativas.

O tratamento com apenas lodo de esgoto apresentou os melhores valores para fósforo no solo

em todos os períodos de avaliação, em comparação com os outros tratamentos. O período de avaliação na fase de crescimento apresentou valor de 19,8 mg/dm³ de fósforo no solo, na fase de crescimento inicial esse elemento é importantíssimo para a planta. Segundo Malavolta (1985), o fósforo possui um papel fundamental na vida das plantas, por participar dos chamados compostos ricos de energia, como o trifosfato de adenosina (ATP), sendo absorvido pelas raízes como H_2PO_4 , encontrando-se no xilema em maior proporção nessa forma.

No período da colheita, o tratamento com lodo de esgoto se mostrou mais eficiente que os demais, proporcionando duas vezes mais fósforo no solo que o tratamento com adubação mineral, no mesmo período. Estudos realizados por Barbosa (2007) relatam que o lodo de esgoto possui efeito residual no solo e esse é responsável pelo aumento dos teores de fósforo no solo com o passar do tempo.

Tabela 3 - Valores médios da concentração de Fósforo em mg/dm³ obtidos em função dos tratamentos e períodos de avaliação no cultivo do cultivar de milho PL 6880.

	= 0000			
	Tratamentos			
Períodos de avaliação	Adubação Mineral	Adubação Mineral + Lodo de Esgoto	Lodo de Esgoto	
Inicial	7,00 A a	7,00 B a	7,00 C a	
Crescimento	9,40 A b	11,80 A b	19,80 A a	
Floração	8,40 A a	7,00 B b	12,00 B a	
Enchimento de Grãos	6,14 A a	4,56 B b	10,17 B a	
Colheita	4,47 B b	3,90 B b	8,96 B a	

As médias seguidas pela mesma letra maiúscula em coluna e minúscula em linha não diferem entre si a 5% de significância.

Observando as médias em linha (letras minúsculas), todos os períodos de tratamentos obtiveram diferenças significativas exceto o período inicial da cultura.

No período de avaliação da fase inicial da cultura, todos os tratamentos proporcionaram um aporte de fósforo ao solo de 7 mg/dm³, sendo satisfatório a germinação e crescimento inicial do milho.

Nos de mais períodos de avaliação houve diferença significativa entre os tratamentos em cada

fase da cultura, sendo que os tratamentos adubação mineral e lodo de esgoto não diferiram entre si, proporcionando maiores concentrações de fósforo no solo em relação ao tratamento com adubação mineral mais lodo de esgoto.

Na **tabela 4** estão apresentados os resultados da análise estatística referente às concentrações de fósforo em cinco períodos de avaliação.

Tabela 4 - Valores médios do peso de sementes por vaso em gamas obtidos em função dos tratamentos no cultivo do cultivar de milho PL 6880.

	Т	ratamentos	
Característica	Adubação Mineral	Adubação Mineral + Lodo de Esgoto	Lodo de Esgoto
PSV	38,70 C	52,15 B	61,99 A

As médias seguidas pela mesma letra não diferem entre si a 5% de significância.

A produção expressas por médias em valores de gramas de sementes por vaso extraídas de cada um dos três tratamentos, e houve diferença significativa entre os tratamentos onde o tratamento com lodo de esgoto apresentou melhor resultado que os demais tratamentos. Essa análise foi conclusiva para que determinássemos que a utilização do lodo de esgoto no cultivo de milho pode aumentar a produtividade da cultura em comparativo com os métodos convencionais de cultivo.

Segundo Melo e Marques (2000), o lodo de esgoto proporciona aumento na CTC e no pH do solo, promove redução nas concentrações de Al trocável, além de ser fonte de macro e micronutrientes para as culturas e aumentar a população microbiana benéfica do solo.

O tratamento com adubação convencional mais lodo de esgoto apresentou também melhores valores de produção em relação ao tratamento com adubação mineral, ou seja, utilizando-se lodo apenas no plantio já é possível aumentar a produção da cultura, porém essa produção aumenta ainda mais quando este lodo é utilizado em substituição total à fonte de nitrogênio. Pois, o lodo esgoto segundo Sanepar (1997) contem minerais, principalmente nitrogênio, nutrientes fósforo e micronutrientes devido ao elevado teor em matéria orgânica, cujos efeitos no solo se fazem sentir a longo prazo.

CONCLUSÕES

Após a análise de todos os resultados, pode-se concluir que houve diferença significativa entre o uso e o não uso do lodo. O uso do lodo de esgoto doméstico é benéfico ao solo e a planta, pois auxilia no aporte de fósforo no solo e resulta aumento na produtividade de grãos da planta de milho cultivar PL 6880, podendo ser usado com ou como adubo orgânico.

REFERÊNCIAS

a. Periódicos:

ALBUQUERQUE, P. E. P.; COUTO, L.; RESENDE, M. *A cultura do milho irrigado.* Brasília: Embrapa, 2003. 317p.

BARBOSA G. M. C.; TAVARES FILHO J. Uso agrícola do lodo de esgoto: influência nas propriedades químicas e físicas do solo, produtividade e recuperação de áreas degradadas. Londrina: Semina: Ciências Agrárias, v. 27, n. 4, p. 565-580, 2006.

BARBOSA, G. M. C.; TAVARES FILHO, J.; BRITO, O. B.; FONSECA, I. C. B. Efeito residual do lodo de esgoto na produtividade do milho safrinha. Revista Brasileira de Ciência de Solo, v.31, p.601-605, 2007.

BERNARDO, S.; SOARES, A. A.; MANTOVANI, E. C. *Manual de irrigação.* 7. ed. Viçosa: Ed. UFV, 2005, 611p.

MALAVOLTA, E. Nutrição mineral. In: FERRI, M. G. (Ed.). Fisiologia vegetal 1 São Paulo: EPU, 1985. p. 97-116.

MELO, W.J.; MARQUES, M.O. Potencial do lodo de esgoto como fonte de nutrientes para as plantas. In: BETIOL, W.; CAMARGO, O.A. (Ed). Impacto ambiental do uso agrícola do lodo de esgoto. Jaquariúna: EMBRAPA Meio Ambiente, 2000. 312p.

b. Livro:

PREZOTTI, L. C.; GOMES, J. A.; DADALTO, G. G.; OLIVEIRA, J. A. de. Manual de recomendação de calagem e adubação para o estado do Espírito Santo - 5ª Aproximação. Vitória: SEEA/INCAPER/CEDAGRO, 2007. 305p.

c. CD-ROM

SILVA, J.E.; RESCK, D.V.S. & SHARMA, R.D. Utilização do lodo de esgoto como fonte de fósforo e nitrogênio para milho. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 26., Rio de Janeiro, Sociedade Brasileira de Ciência do Solo, 1997.