Function of the interview of the inte

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

CLEWCIA DO SOCO

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Protection goals (what do we want to protect?)

- Soil quality and sustainability
- Ability of soil do deliver ecosystems services (Provisioning, Regulatory and Supporting)
- Ecosystem services (and underlying processes) should be protected or restored on a permanent sustainable basis
- Aim has to be established by regulatory actions (e.g. EU biodiversity strategy 2020/2050; EU Soil Thematic Strategy, CONAMA 420/09)

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

	Which fu	nction	s / servi	ces to p	rotect ?)	
	Ecosystem service	Land use					
		Nature	Agriculture	Parks	Allotment gardens	Industrial sites	
Supporting	Nutrient cycling	+	+	+/-	+	+/-	
	Soil formation	+	+	+/-	+/-	-	
	Primary production	+	+	+/-	+	-	
Regulating	Climate regulation	+	+	+/-	+/-	-	
	Disease suppression	+	+	+/-	+	-	
	Water regulation purification	+	+	+/-	+/-	+	
Source: Faber and Wan Wensem, STOTEN (2012)							

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Use of E	cosyste	m Ser	vices concept				
	ELSEVIER	Contents lists Science of the journal homepage: ww	e Total Environment w.elsevier.com/locate/scitotenv				
efsa European Food Safety Authority	Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides Karin M. Nienstedt ^{a,1} , Theo C.M. Brock ^b , Joke van Wensem ^c , Mark Montforts ^d , Andy Hart ^e , Alf Aagaard ^{a,2} , Anne Alix ^f , Jos Boesten ^b , Stephanie K. Bopp ^{a,#} , Colin Brown ^g , Ettore Capri ^h , Valery Forbes ^{1,3} , Herbert Köpp ^j , Matthias Liess ^k , Robert Luttik ^d , Lorraine Maltby ¹ , José P. Sousa ^m , Franz Streissl ^a , Anthony R. Hardy ⁿ						
SCIENTIFIC OPINION Scientific Opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the Guidance Documents on Aquatic and Terrestrial Ecotoxicology (SANCO/3268/2001 and SANCO/10329/2002) ¹ EFSA Panel on Plant Protection Products and their Residues (PPR) ^{2,3}							
	Science of the Total Environment						
© Paulo Sousa J.H. Faber ^{a,*} , J. van Wensem ^b							

No !

Effects of chemicals

Total concentration does not reflect bioavailability;
Chemical analysis does not t

• Chemical analysis does not take into account the interactions between contaminants;

• No legislated threshold values for many chemicals and when existing many are generic values;

• Ecotoxicological /ecological data may help to eliminate false-positive and false negative risk values

So, no true RA without measuring effects

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

What do we assess when testing in soil ?

Soil habitat function (ISO 15799)

ability of soils/soil materials to serve as a habitat for microorganisms, plants, soil-living animals and their interactions (biocenosis)

Bioassays made with the soil matrix

Soil retention function (ISO 15799)

ability of soils/soil materials to adsorb pollutants in such that they cannot be mobilized via the water pathway and translocated into the food chain or groundwater *Bioassays made with soil eluates*

© Paulo Sousa

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

ALL STARS: Enchytraeid test

Enchytraeid Reproduction Toxicity Test (*Enchytraeus albidus*) ISO 16387:2004

> More ecologically relevant than earthworms

Good substitute test when earthworm test is not possible (difficult soils)

> Other species (e.g., E. crypticus) can be selected (less sensitive to soil properties)

© Paulo Sousa

XXXIV CONGRESSO BRA 28 de julho a 2 de agosto de 2013 | Co

50027 20KV **500U**

ALL STARS: Collembola tests I

Collembola Reproduction Toxicity Test (*Folsomia candida*) ISO 11267:1998

> Other species (e.g., F. fimetaria; Onychiurus folsomi) can be selected (sexual reproduction; increase ecological relevance)

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Other Soil invertebrate Tests

Predatory mite *H. aculeifer* reproduction test OECD 226: 2008

Nematodes Caenorhabditis elegans survival test ASTM E 2172-01: 2001

Caenorhabditis elegans reproduction test ISO 10872: 2010

© Paulo Sousa

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Other Soil invertebrate Tests

Snail Growth Toxicity Test (*Helix aspersa*) ISO 15952: 2003

Carabid beetle Test (*Poecilus cupreus*) BBA VI, 23-2.1.8: 1991

Staphilinid beetle Test (*Aleochara bilineata*) BBA VI, 23-2.1.10: 1994

Spider Acute Test (*Pardosa* sp.) BBA VI, 23-2.1.9: 1994

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Other Soil invertebrate Tests

Isopod Growth Test (*Porcellio scaber*) Løkke & Van Gestel 1998

Isopod Reproduction Test (*Porcellio scaber*) Løkke & Van Gestel 1998

Isopod Feeding Test (*Porcellio scaber*) Drobne 1997

Centipede Test (*Lithobius mutabilis*) Mortality & growth Løkke & Van Gestel 1998

Diplopod Test (*Brachydesmus superus*) Mortality & reproduction Løkke & Van Gestel 1998

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

0

Pesticide	Organism	EC50 (95% IC) (mg ai/kg dw soil)	EC50 (mol ai/kg dw soil)
azoxystrobin	F. candida	187 (130 - 243)	4.64E-04
(403.4 g/mol)	E. crypticus	177 (120 – 135)	4.39E-04
	E. andrei	42.0 (23.2 - 60.8)	1.04E-04
chlorothalonil	F. candida	31.7 (24.6 - 38.8)	1.19E-04
(265.9 g/mol)	E. crypticus	141 (111 – 170)	5.30E-04
	E. andrei	40.9 (30.1 - 51.7)	1.54E-04
ethoprophos	F. candida	0.027 (0.024 - 0.031)	1.11E-07
	E. crypticus	64.8 (34.9 - 94.8)	2.67E-04

Soil invertebrates: Test battery

Different species present different sensitivities To decrease uncertainty due to different sensitivities, testing on several test species is needed!

8.3 (3.6 - 13.0)

Leitão et al. (submited)

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

3.43E-05

© Paulo Sousa

(242.3 g/mol)

E. andrei

ALL STARS: Plant tests

Plant seed germination and/or growth Monocots and Dycots ISO 11269-2:2005

Small soil volumes Short-term tests (~ 7 d) Emergence

Larger soil volumes Longer-term tests (14-21 d) Growth (root and shoot length and dry mass)

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

ALL STARS: Microbial tests

Different tests have different degrees of sensitivity. A battery of assays, integrating different ecosystem parameters and different indicators, should be used!

They evaluate effects on the Natural microbial community

This battery should integrate measures of: Microbial diversity Microbial biomass Microbial activity (incl. nutrient cycling)

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Microbial tests: Microbial diversity

Genetic diversity

TRFLP, PCR-DGGE (changes in dominant bacterial, fungal, Archea communities)

Functional diversity

BIOLOG assay; MicroResp assay(metabolic fingerprinting; based on rate of substrate use; able to discriminate stressed communities)

Structural diversity

PLFA's (combines bacterial and fungal diversity; marker lipid profiles able to measure changes in dominant microbial communities)

Time (Days) 0 6 10 17 24 30

© Paulo Sousa

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Microbial tests: Microbial activity

Soil respiration Respirometry (CO2 production); Respiratory quotient (qCO2) (soil resp. / Cmic);

Soil enzymes (e.g.)

Dehydrogenase (general microbial activity); Beta-glucosidase, Cellulase, Phenol-oxidase (C cycling); Urease, Amidase (N cycling); Phosphatase (P cycling); Arylsulphatase (S cycling)

Nitrogen transformations

N-mineralization; Nitrification / Denitrification; N-fixation

Molecular methods Metagenomics Transcriptomics

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

ALL STARS: Semi-field methods

Potential Endpoints

Ecosystem structure

Chemical residues

- soil, leachate, plant

Nutrients

- soil, leachate
- Soil organisms
- nematodes
- arthropods
- enchytraeids
- earthworms
- microorganisms

Plants

- biomass

© Paulo Sousa

Ecosystem *function*

OM decomposition

Feeding activity (bait lamina)

Microbial activity (e.g.)

- enzymes
- respiration
- diversity
- molecular methods

<section-header><section-header>

Conceptual Model

• The site is limited by the urban area of Sto Amaro (South) and by agricultural and pasture areas at North

Relevant contaminants
Pb, Cd, Cu, Zn

- Actions planned for the smelter area:
 - (1) In places with a high risk the residues will be removed and encapsulated in a single site
 - (2) In places with low risk, the residues will stay in place
 - (3) Major goal is to re-naturalize the area

Soil properties

Soil group	Coarse sand (%)	Fine sand (%)	Sand (total) (%)	Silt (%)	Clay (%)	Texture (USDA)	pH (KCl 1:5 v:v)	Organic matter (%)	CEC (meq 100g)	WHC (%)
Group 1										
Ref. 1	2,3	8,6	10,9	42,1	47,0	Silty Clay	7,1	1,1	34,16	53,78
P1000T1	2,5	21,8	24,3	19,9	55,8	Clay	3,7	2,0	43,20	59,95
P20T3	11,4	30,0	41,4	22,3	36,3	Clay Loam	6,8	1,9	42,16	67,73
P400T3	6,5	8,6	15,1	52,4	32,5	Silt Clay Loam	7,1	1,9	35,84	56,67
Group 2										
Ref. 2	50,9	38,5	89,4	2,8	7,7	Loamy Sand	4,9	1,0	37,60	27,53
P0	43,2	31,3	74,5	11,9	13,6	Sandy Loam	6,7	0,3	38,56	44,12
P20T1	48,0	13,8	61,8	19,0	19,3	Sandy Loam	7,1	0,2	37,28	46,4
P150T1	56,2	21,1	77,4	12,3	10,3	Sandy Loam	6,7	2,1	21,28	28,55
P50T3	69,2	9,1	78,3	10,4	11,3	Sandy Loam	7,2	2,8	16,56	22,05
Group 3										
Ref. 3	22,2	15,0	37,2	11,1	51,7	Clay	6,1	3,9	36,48	60,75
P50T1	25,2	13,4	38,6	29,0	32,4	Clay Loam	6,7	1,1	38,16	54,51
P400T1	19,6	23,9	43,5	20,2	36,3	Clay Loam	6,8	5,1	37,44	58,93
P150T3	8,4	15,2	23,5	21,4	55,1	Clay	6,8	2,5	49,20	61,76
P1000T3	10,3	19,5	29,8	29,8	40,4	Clay Loam	7,0	5,7	42,72	57,57
ST COMPANY										

6

Niemeyer et al. JSS, 2010

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

ChLoE – Total metal Concentrations

Soil group	Pb	Cd	Cu	Zn	Cr	Ni	Fe	Mn
Group 1								
Ref. 1	16	<0,2	66	94	77	54	45000	840
P1000T1	23	<0,2	60	80	62	46	48000	360
P20T3	308	<0,2	56	420	78	60	49000	672
P400T3	179	0,3	44	90	59	46	34000	760
Group 2								
Ref. 2	13	<0,2	18	24	16	28	2900	34
P0	1264	<0,2	76	3800 (2.8)	72	57	52000	674
P20T1	133	<0,2	56	220	80	56	41000	780
P150T1	37460 ^(10.4)	771 ^(9.8)	594 ^(1.6)	42200 (33.5)	57	70	110000	1720
P50T3	26074 ^(7.1)	62	3196 (8.2)	95940 ^(73.5)	80	40	117000	5880
Group 3								
Ref. 3	152	<0,2	40	260	59	40	53000	820
P50T1	164	<0,2	60	240	80	58	43000	720
P400T1	961	8,8	60	840	64	48	35000	540
P150T3	2200	12	108	3300	84	58	56000	678
P1000T3	99	<0,2	56	156	84	52	49000	568

Numbers in superscript indicate those soils whose metal concentration exceeded the corrected Dutch HC50 (based on EC50 values) benchmarks according to Rutgers et al. (2008) (Ex: the [Pb] at P150T1: 37460 (10.4), indicates that [Pb] was 10.4 times higher than the HC50corPb).

© Paulo Sousa

WHAT AND

	Chemical Line of Evidence (ChLoE)											
Soil group	Pb	Cd	Cu	Zn	Cr	Ni	Combined ChLoE					
Group 1												
P1000T1	0,00	0,00	0,00	0,00	0,00	0,00	0,00					
P20T3	0,08	0,00	0,00	0,13	0,01	0,02	0,23					
P400T3	0,05	0,00	0,00	0,01	0,00	0,01	0,05					
Group 2												
P0	0,29	0,00	0,12	0,73	0,08	0,05	0,85					
P20T1	0,00	0,00	0,07	0,11	0,08	0,02	0,25					
P150T1	0,88	0,84	0,60	0,98	0,07	0,10	1,00					
P50T3	0,83	0,45	0,90	1,00	0,10	0,02	1,00					
Group 3												
P50T1	0,05	0,00	0,05	0,02	0,04	0,04	0,19					
P400T1	0,20	0,13	0,04	0,20	0,02	0,02	0,49					
P150T3	0,30	0,15	0,08	0,47	0,02	0,02	0,72					
P1000T3	0.00	0.00	0.03	0.00	0.03	0.02	0.06					

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

		_					
	Soil group	Avoidance <i>Eisenia</i>	Avoidance <i>Folsomia</i>	<i>Daphnia</i> acute	Microtox	Combined EcLoE	t
	Group 1						—
	P1000T1	1,00	0.33	0.02	0,00	0.72	
	P20T3	0.46	0.3	0,00	0,00	0.21	
	P400T3	0.36	0.25	0,00	0,00	0.17	
	Group 2						—
	PO	0.97	0.79	0,00	0,00	0.72	
	P20T1	0.96	0.33	0,00	0,00	0.6	
	P150T1	1,00	0.22	0.32	0,00	0.73	
Q	P50T3	1,00	0.11	0,00	0.89	0.82	
	Group 3						—
	P50T1	0.76	0.54	0,00	0,00	0.43	
	P400T1	0.23	0.32	0,00	0,00	0.15	
30	P150T3	0.57	0.45	0,00	0,00	0.30	
State State	P1000T3	0.42	0,00	0,00	0,00	0.13	Niemeyer et al. JSS, 201

© Paulo Sousa

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

		Ecolog	gical LoE (I	ELoE)	
	Soil group	Bait lamina (% pierced holes)	Vegetation cover (%)	Soil respiration (ug CO2 /g soil / day)	_
	Overall Ref	48.6 ± 13.9	81.3 ± 21.0	139.4 ± 106.4	_
	Group 1				_
	P1000T1	45.3 ± 16.1	67.5 ± 15.0	164.0 ± 79.1	
C III	P2013	30.4 ± 15.4	32.5 ± 12.6 ***	82.6 ± 15.8	
	P40013	10.3 ± 6.7	97.5 ± 5.0	165.2 ± 41.3	
	Group 2				-
A	P0	18.4 ± 14.3 ***	22.5 ± 22.2 ***	34.9 ± 7.8 ***	
	P20T1	17.8 ± 10.2 ***	30.0 ± 16.3 ***	35.1 ± 7.1 ***	
	P150T1	7.3 ± 8.1 ***	30.0 ± 42.4 ***	49.2 ± 6.6 **	
	P50T3	11.8 ± 5.7 ***	20.0 ± 14.1 ***	52.2 ± 12.6 **	_
	Group 3				_
	P50T1	19.8 ± 6.8 ***	57.5 ± 12.6	41.4 ± 2.4 **	
Carlo	P400T1	61.5 ± 23.8	100.0 ± 0.0	234.9 ± 83.3	
	P150T3	5.5 ± 6.9 ***	57.5 ± 9.6	60.5 ± 9.2	Niemeyer et al. JSS, 2010
	P1000T3	26.3 ± 17.5 *	100.0 ± 0.0	n.d.	
© Paulo	n.d not determined	b	QUE		EIRO DE CIÊNCIA DO SOLO do Santinho Resort Florianópolis SC

		Ecc	logical Line c	of Evidence (E	LoE)	
	Soil group	Bait Iamina	Vegetation cover	Soil respiration	Combined ELoE	
10 T	Group 1					
all and a second	P1000T1	0,00	0,17	0,00	0,06	
	P20T3	0,37	0,60	0,41	0,47	
1	P400T3	0,79	0,00	0,00	0,40	
	Group 2					
	P0	0,44	0,72	0,75	0,66	
	P20T1	0,63	0,63	0,75	0,68	
	P150T1	0,85	0,63	0,65	0,73	
6-	P50T3	0,76	0,75	0,63	0,72	
	Group 3					
	P50T1	0,59	0,29	0,70	0,56	
	P400T1	0,00	0,00	0,00	0,00	
	P150T3	0,89	0,29	0,57	0,67	
	P1000T3	0,46	0,00	n.a.	0,19	Niemewer et al. 189

Total and extractable metals

No Xo																	
Siter			Tota	al (mg/kg)							Ext	tractable (mg/l) in C	0.01 M CaC	l ₂ (1:10; v	:v)	
Sites	Pbª	Cdª	Cu³	Znª	Cr	Ni	Fe	Mn		Pb	Cd	Cu	Zn	Cr	Ni	Fe	Mn
Group 1					•			•									
Ref 1	16	<0.2	66	94	77	54	45000	840		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
P1000T1	23	<0.2	60	80	62	46	48000	360		0.1	0.4	<0.8	1.9	<0.8	1.6	<1.1	71
P20T3	308	<0.2	56	420	78	60	49000	672		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
P400T3	179	0.3	44	90	59	46	34000	760		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
Group 2	•			•	•		•							•			•
Ref 2	13	<0.2	18	24	16	28	2900	34		<0.1	<0.01	<0.8	0.2	<0.8	<1.4	<1.1	0.8
PO	1264	<0.2	76	3800 ^(2.8)	72	57	52000	674		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
P20T1	133	<0.2	56	220	80	56	41000	780		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
P150T1	37460 ^(10.4)	771 ^(9.8)	594 ^(1.6)	42200 ^(33.5)	57	70	110000	1720		2.2	7.3	<0.8	1.3	<0.8	<1.4	<1.1	<0.5
P50T3	26074 ^(7.1)	62	3196 ^(8.2)	95940 ^(73.5)	80	40	117000	5880		<0.1	<0.01	<0.8	1.0	<0.8	<1.4	<1.1	<0.5
Group 3								•									
Ref 3	152	<0.2	40	260	59	40	53000	820		<0.1	0.28	<0.8	<0.2	<0.8	<1.4	<1.1	1.3
P50T1	164	<0.2	60	240	80	58	43000	720		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
P400T1	961	8.8	60	840	64	48	35000	540		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	<0.5
P150T3	2200	12	108	3300	84	58	56000	678		<0.1	<0.01	<0.8	0.2	<0.8	<1.4	<1.1	<0.5
P1000T3	99	<0.2	56	156	84	52	49000	568		<0.1	<0.01	<0.8	<0.2	<0.8	<1.4	<1.1	0.9
© Paulo :	Sousa						ARTQUE	ARAQU	28 d	e julho a	2 de agost	o de 2013	Costão	do Santinh	no Resort	Florianóp	oolis SC

	Chem LoE (Extractable metals)	Growth P. subcapitata	Reprod. D. magna	Combined EcLoE	IR Retentior Function
Group 1					
1000T1	0.99	0.00	0.00	0.00	0.88
20T3	0.00	0.00	0.00	0.00	0.00
400T3	0.00	0.00	0.00	0.00	0.00
Group 2					
P. Zero	0.00	0.00	0.00	0.00	0.00
20T1	0.00	0.00	0.00	0.00	0.00
150T1	1.00	0.00	0.00	0.00	0.99
50ТЗ	0.44	0.00	0.00	0.00	0.25
Group 3					
50T1	0.00	0.00	0.00	0.00	0.00
400T1	0.00	0.00	0.00	0.00	0.00
150T3	0.00	0.00	0.00	0.00	0.00
1000T3	0.00	0.00	0.00	0.00	0.00

		Pla	nt gro	wth tes	st	
		Shoot length	of plants (cm)	Biomass of plar	nts (g; dry weight)	_
		A. sativa	B. rapa	A. sativa	B. rapa	_
	Soil groups	n=4	n=4	n=4	n=4	
()) ·	Ref 1	31.7 ± 1.8	3.3 ± 0.2	0.17 ± 0.01	0.17 ± 0.04	_
	P1000T1	39.5 ± 5.3	2.7 ± 0.2**	0.31 ± 0.04	0.07 ± 0.02***	
	P20T3	18.4 ± 1.0***	2.7 ± 0.2**	0.11 ± 0.01**	0.07 ± 0.01***	
dh	P400T3	23.0 ± 1.9**	2.3 ± 0.3***	0.16 ± 0.01	0.06 ± 0.01***	
	Ref 2	25.2 ± 3.9	2.7 ±0.2	0.17 ± 0.02	0.09 ± 0.02	_
	PO	26.3 ± 2.1	3.7 ±0.4	0.23 ± 0.02	0.24 ± 0.02	
	P20T1	25.2 ± 2.3	2.9 ± 0.0	0.20 ± 0.03	0.14 ± 0.01	
	P150T1	19.8 ± 1.9*	2.7 ± 0.2	0.14 ± 0.04	0.04 ± 0.01**	
	P50T3	19.5 ± 3.3*	2.9 ± 0.2	0.17 ± 0.01	0.06 ± 0.01	
	Ref 3	34.8 ± 3.7	4.7 ±1.2	0.26 ± 0.05	0.45 ± 0.17	_
	P50T1	25.3 ± 2.9**	4.3 ±0.2	0.17±0.03*	0.32 ± 0.05	
(And the second	P400T1	42.7 ± 3.0	7.3 ± 0.4	0.29 ± 0.05	0.91 ± 0.08	
	P150T3	28.9 ± 1.0*	3.1 ± 0.1**	0.16 ± 0.03*	0.16 ± 0.02***	
	P1000T3	30.9 ± 5.3	4.8 ± 0.2	0.24 ± 0.05	0.30 ± 0.04*	
© Paulo Sousa			A POLICE CORPACING	28 de julho a 2 de agos	to de 2013 Costão d	– J DE CIENCIA DO SOLO o Santinho Resort Florianópolis SC

Chemical and Ecotoxicological Risk values (Tier 2)

	Chem LoE (total metals)	Reprod. F. candida	Reprod. E. crypticus	Reprod. E. andrei	Shoot lenght of <i>A. sativa</i>	Shoot lenght of <i>B. rapa</i>	Dry W A. sativa	Dry W B. rapa	Combined EcLoE
Group 1					•				•
1000T1	0.00	0.03	0.96	0.93	0.00	0.17	0.00	0.58	0.63
20T3	0.23	0.38	0.00	0.23	0.42	0.15	0.32	0.59	0.32
400T3	0.05	0.43	0.00	0.00	0.28	0.28	0.08	0.63	0.28
Group 2									
PO	0.85	0.00	0.39	0.31	0.00	0.00	0.00	0.00	0.12
20T1	0.25	0.00	0.59	0.26	0.00	0.00	0.00	0.00	0.16
150T1	1.00	0.00	0.99	0.92	0.17	0.00	0.14	0.53	0.71
50T3	1.00	0.00	0.59	0.66	0.14	0.00	0.00	0.27	0.29
Group 3									
50T1	0.19	0.04	0.00	0.21	0.27	0.09	0.36	0.17	0.17
400T1	0.49	0.00	0.00	0.16	0.00	0.00	0.00	0.00	0.02
150T3	0.72	0.06	0.00	0.83	0.17	0.33	0.29	0.58	0.41
1000T3	0.06	0.61	0.00	0.30	0.11	0.00	0.00	0.21	0.21

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Ecological surveys (microbial parameters) Variance partitioning

Variance partitioning of microbial and biochemical data according to total metal content and vegetation cover. Values expressed in percentage of total variation excluding covariables (soil moisture, soil organic carbon, and mineral nitrogen contents).

Variables	Variation explained (%)	р
Variation of microbial and biochemical parameters	66.8ª	
Covariables	33.2	
Metals and Vegetation (total)	52.2	0.002
Metals	49.1	0.002
Vegetation	25.3	0.002
Metals (pure)	26.9	0.002
Vegetation (pure)	3.1	0.002
Shared	22.2	

^a Expressed as % of total variation.

Niemeyer et al. ASE, 2012

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

ELoE – Risk values (Tier 2)

Soil			Microbia	al param	eters				Surface	e dewlling arth	ropods		Decomp	Combined
groups	MBC	MBN	Asparaginase	DHA	Ac Fosf	Amon	Nitrif	Araneae	Hymenoptera	Coleoptera	Orthoptera	Other Orders	Decomp	ELOE
Group 1														
1000T1	0.41	0.02	0.16	0.34	0.16	0.15	0.00	0.86	0.42	0.32	0.42	0.45	0.41	0.37
20T3	0.73	0.63	0.16	0.81	0.28	0.54	0.00	0.63	0.50	0.45	0.24	0.26	n.d.	0.46
400T3	0.20	0.16	0.13	0.80	0.22	0.39	0.00	0.65	0.12	0.26	0.29	0.60	0.84	0.44
Group 2														
P. Zero	0.72	0.89	0.37	0.90	0.56	0.60	0.74	0.76	0.41	0.27	0.25	0.76	0.82	0.69
20T1	0.61	0.74	0.81	0.82	0.68	0.34	0.69	0.86	0.57	0.74	0.18	0.29	n.d.	0.63
150T1	0.82	0.81	0.73	0.54	0.42	0.48	0.55	0.69	0.57	0.82	0.53	0.76	0.84	0.69
50T3	0.28	0.56	0.62	0.70	0.27	0.62	0.71	0.88	0.49	0.48	0.47	0.53	0.84	0.62
Group 3														
50T1	0.36	0.78	0.87	0.83	0.62	0.61	0.77	0.90	0.66	0.13	0.22	0.18	0.76	0.67
400T1	0.19	0.40	0.57	0.57	0.07	0.12	0.00	0.48	0.23	0.67	0.25	0.49	0.38	0.37
150T3	0.15	0.47	0.56	0.70	0.05	0.53	0.62	0.99	0.52	0.07	0.29	0.18	0.91	0.47
1000T3	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.54	0.45	0.44	0.13	0.29	0.31	0.38
L														

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

Major outcome

Results from tier 2 confirmed the risk pointed by tier 1, with points outside the smelter presenting low or environmentally acceptable risk values, and points inside the smelter area presenting high (or very high) risk values, especially in sites associated with tailing deposits.

> The low toxicity in eluate tests indicated high adsorption of metals in soil, probably favored by neutral pH, content and type of clay, and ageing, and consequently no potential risk on retention function in most of points.

© Paulo Sousa

Major outcome

➤In general, the present results indicated that the failed recovery of the area by covering tailings with soil from another site, and the consequently failure in revegetating the area, created inappropriate conditions for the establishment of plant, microbial and animal communities in some of the sites inside the area.

So, besides the direct effects of metal contamination seen on ecotoxicological effects, also indirect effects are visible from the presence of these contaminants, compromising the functioning of the ecosystem inside the smelter area.

© Paulo Sousa

© Paulo Sousa

Ongoing activities

Modeling results from different LoEs and individual and combined risk values with metal and soil properties - link with previous extensive screening to create a risk map for the area

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

My opinion on future lines of research

RETROSPECTIVE RISK ASSESSMENT

Moving beyond the VRQ for CONAMA 420 and derive ecotoxicologically and region specific prevention and investigation values using representative soils from each region;

Create a reference soil library with ecotoxicological data

Train professionals (public and private sectors) on ecological risk assessment

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

My opinion on future lines of research > PROSPECTIVE RISK ASSESSMENT

Further research on using tropical and sub-tropical Brazilian species to use mainly on higher tier testing (also applicable to retrospective RA)

Improve pesticide risk assessment attending region specific characteristics and particular exposure pathways (e.g., more efforts on studies on soil-water interfaces)

Improve risk assessment of wastes/products (sludges, manures, mineral products, etc)

XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

