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CZO Locations
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The Christiana River Basin ( ~1440 km 2)





� One of the major mechanisms 
for C stabilization

� Controlled by the chemistry of 
organic matter and mineralogy 
(Fe, Mn and Al oxides, 
aluminosilicates)

Adapted from Trumbore et al., 2008

Organo - Mineral Interactions



What are the major mechanisms for organic matter-
mineral complexation?

Organic Matter – Mineral Interaction Mechanisms



Overall Hypothesis:  Organo-mineral complexation, a key process for stabilizing carbon, 

is limited by the supply of the mineral surfaces and the mixing of minerals with organic 

matter in natural ecosystems

Adapted from www.udel.edu/czo/research.html



Redox Ladder of 
Environmentally

Relevant Redox Couples 

Adapted from Borch et al., 2010; Fendorf et al., 2010

Motivation
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� Investigate soil organic matter molecular compositi on 
under varying landscape topographic positions

� Assess the interactions of C and C forms with soil minerals 
at the molecular scale

� Characterize Fe speciation along the redox gradient s

Research Objectives
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� C  and  Fe speciation varies along landscape topographic gradients.

� Compared to oxic upland soils, Fe oxides become less important in controlling C 
sequestration at suboxic-anoxic depositional positions and in wetlands. 
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� Pasture, forest, and agricultural hillslopes

� Summit, backslope,  and footslope

Pasture

Forest

Agri.

Field Sampling





Near-edge X-ray Absorption Fine Structure (NEXAFS)

• Characterize C and N functional groups of soil organic matter without any 
pretreatment.

• Spot Size: 1000*100 MICRONS

C

SGM beamline, CLS

Advanced Characterization Techniques



Scanning Transmission X-ray Microscopy (STXM) –NEXA FS

• Map distribution of  C and C forms and the 
major elements (K, Ca, Fe, Al, Si) in  soils at 
nanometer scale.

• Assess the interactive mechanisms of C with 
specific soil minerals.

Acquire sequence of images over NEXAFS 
spectral region at 30-40nm resolution

SM beamline, CLS

Advanced Characterization Techniques



Extended X-ray Absorption Fine Structure 
Spectroscopy (EXAFS):

Linear Combination Fitting of standard spectra to 
unknown spectra

Mössbauer Spectroscopy:

A suitable tool to tease apart Fe oxides from each 
other and from Fe-phyllosilicates in soils and 
sediments.

Peretyazhko et al., 2012

X-ray Diffraction (XRD):

Identify clay mineralogy

Advanced Characterization Techniques
Iron Speciation



STXM-NEXAFS Analysis of Pasture Soil

13



Footslope soil: enriched in aromatic C=C
depleted in aliphatic C-H
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Pasture Soil Carbon Speciation by NEXAFS



Fe Al Si C Ca Fe C Al Si

Fe is intimately associated with Al and Si . 
Discrete quartz  particles.
C is closely associated with clay particles, as particulate organic 
matter has been excluded from the clay fractions. 
The discrete SiO2 particles contain little or no C

Color-coded Composite Maps of C, Ca, Fe, Al and Si 
from Pasture Soil Clay Fractions



Correlation between C and Ca, Fe, Al, & Si

Ca Fe Al Si
Summit Soil

Footslope Soil

r = 0.80 r = 0.58 r = 0.44 r = 0.26

r = 0.51r = 0.51r = 0.70r = 0.89

Good C-Ca Correlation
Better correlation of C with Fe than Al & Si 20
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Ca Distribution and Speciation 
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Fe Distribution and Speciation 

Fe3+ present in soils. No Fe2+

2 µm
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Fe(III)-aluminosilicates Fe(III) oxides

Vermiculite
(%)

Illite
(%)

2-line ferrihydrite
(%)

Goethite
(%)

Hematite
(%)

Summit 35 15 9 18 23

Footslope 32 12 16 24 16

Fe EXAFS

About 50% of total Fe is in Fe(III) oxides.
Fe(III) oxides are mainly crystalline goethite and hematite.
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Clay aluminosilicates in the soils are hydroxy-interlayered vermiculite, illite
and kaolinite by XRD

Si Distribution and Speciation 

2 µm
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Solid-phase Iron Speciation Under Varying Redox
Environments

21



Modified  from Walter and Merritts, 2008

Role of Fe- and Mn- redox transformations on carbon cycle and sequestration in a 
mixed land use watershed, including floodplain forest, upland forest and agriculture

Zone of dynamic groundwater/stream 
water fluctuations, microbiological 

activity and  cycling  of  Fe, Mn, N, and C 

Post-Colonial Deposits Pre-Colonial (Buried Wetland) ColluviumGravel

Research Conceptual Model



Post-Colonial Deposits

Pre-Colonial (Buried Wetland)

Gravel

Bedrock

Field Sampling: Floodplain
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Continuous In-situ Monitoring of redox in Western 
Flooplain



Less Fe oxides from DCB extractions and lower mineral surface area in 
buried wetland.

Fe from dithionite-citrate extraction (%)
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Hydroxy interlayered vermiculite (HIV), kaolinite, and trace amounts of illite

Chlorite in pre-colonial wetland
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• Fe(III) in clays is significantly reduced in 
the wetland compared to legacy sediments 
and gravel 

• Fe(III) (oxyhydr)oxides were absent in the 
wetland . 

• These findings highlight that in addition to 
reductive dissolution of Fe(III)-
(oxyhydr)oxides, the anoxic redox 
conditions of the floodplain soils lead to 
clay structural Fe  reductive cycling in the 

natural field.
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Stabilization of Organic Matter by Adsorption and 
Coprecipitation with Ferrihydrite: A Laboratory 

Study



� Ubiquitous occurrence 
in the environment

� Small particle size

� High surface area: ~300 
m2/g

� Highly reactive with 
organic matter in soils 
and sediments

� Forms in the presence 
of organic matter

Cismasu et al, 2012

Ferrihydrite: Amorphous Fe Oxides



� Investigate the extent of organic matter adsorption and coprecipitation
with ferrihydrite

� Compare the stability of the adsorbed and coprecipitated organic matter

� Compare the mechanisms of organic matter-ferrihydrite complex 
formation by adsorption and coprecipitation

� Examine the spatial distribution of organic matter on ferrihydrite at the 
nanometer-scale

Research Objectives

31



Experimental Setup

Adsorption: 
Dissolved Organic Matter (DOM): from forest litter layer
Mixing DOM solution with freshly synthesized ferrihydrite (pH 4 and 7)

Coprecipitation:
Dissolve Fe3+ in DOM solution and then raise pH to 7

Desorption: 
0.1 M NaH2PO4, 0.1 M NaOH, and 0.1 M Na4P2O7

Advanced Characterization: 

FTIR

Near-edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy

Scanning Transmission X-ray Microscopy(STXM)

Fe K-edge Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy

32



OC loadings refer to the normalized C content to the initial surface area of ferrihydrite.
Sorbed C decreases with increasing pH.
Coprecipitation leads to a greater maximum OC retention capacity than adsorption.
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Ferrihydrite achieved full C 
coverage at C loadings of 0.88-
0.97 mg C m-2 SA.

Multilayer C on ferrihydrite is 
likely to be formed at C loadings 
> 1 mg C m-2 SA.
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C adsorbed and coprecipitated (mg C m-2)
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Sorption of OM at the openings of micropores clogged and 
rendered them inaccessible

Kaiser and Guggenberger, 2003

0.6 mg C m-2
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C adsorbed and coprecipitated (mg C m-2)
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Mesopore (2-50 nm) Volume

Organic matter can enter into mesopores, thus becoming stabilized.

Coprecipitation results in greater decrease in mesopore volume than adsorption, 
suggesting more C is stabilized in mesopores during coprecipitation.
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OC adsorbed and coprecipitated (mg C m-2)
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Asymmetric 
COOH

Symmetric 
COOH

Strong complexes of 
carboxylic groups with 
ferrihydrite are formed 
perhaps via a ligand exchange 
mechanism
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Ligand exchange between carboxylic C and ferrihydrite could be a major mechanism 
for OM-ferrihydrite interactions.

Aromatic C is selectively takeup by adsorption at lower C loadings.
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OM-Fe(III) complexes are 
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� Coprecipitation results in greater C retention and stability 
than adsorption.

� Organic matter is more stabilized by mineral surfaces 
and small mineral pores at lower loadings.

� Ligand exchange between carboxylic C and ferrihydrite
could be a major mechanism for OM-ferrihydrite 
interactions for both adsorption and coprecipitation.

� Organic matter-Fe(III) complexes are formed via 
coprecipitation

Conclusions
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� What C functional groups are involved with C-mineral 
interactions?

� How are the C functional groups spatially distributed on mineral 
surfaces?

Soil Organic Compounds



Adsorbed and coprecipitated C led to complete loss of N2-accessible micropores, 
indicating micropores are important for carbon-mineral interaction.

Adsorbed or coprecipitated C at the 
openings of micropores clogged and 
rendered them inaccessible to N2

Kaiser and Guggenberger, 2003
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In the process of adsorption, strong 
inner-sphere complexes of 
carboxylic C groups  with 
ferrihydrite are formed via ligand
exchange mechanism.
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FTIR Spectra of the Adsorbed C



As adsorption, strong inner-
sphere complexes of 
carboxylic C groups with 
ferrihydrite are also formed 
via ligand exchange 
mechanism for 
coprecipitation .

Stronger  bonding of Fe-
carboxyl C complexes for 
coprecipitation than for 
adsorption.
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