

# Synthesis and characterization of Biochar (Pyrogenic Carbon)

Etelvino Henrique Novotny (et al., many alii...)







# Soil, Biochar and Ecosystem Services

#### What for?

- $\succ$  GGE  $\Rightarrow$  Climate regulation
- Primary production (Beáta Madari)
- Water regulation and purification
- Nutrient cycling
- Residues use (bones; sewage sludge...)

## For who?







300 g of biomass 2.5 L of water 150 mL  $H_2SO_4$  0.5 mol L<sup>-1</sup>

**Acid Hydrolysis** 



#### What for?

Renewable and Sustainable (soil) biofuels

FP7 – DIBANET Project









**Slow Pyrolysis** 

FP7 – DIBANET Project



























# Water regulation and purification



#### Surface Area and Porosity

| Material                  | Minimum | Average           | Maximum        |  |
|---------------------------|---------|-------------------|----------------|--|
|                           | Specif  | ic Surface Area ( | $m^2 g^{-1}$ ) |  |
| Biochar (n=33)            | 0.4     | 31                | 222            |  |
| Activated Charcoal (n=33) | 55      | 631               | 1287           |  |

Kadirvelu et al., 2005; Brum et al., 2008; Nabais et al., 2008; 2010; 2011; 2013; Brewer et al., 2009; 2011; Novak et al., 2009; Carrier et al., 2010; Song and Guo, 2011; Kim et al., 2012; Anderson et al., 2013



# Water regulation and purification







#### Primary production; Water; Nutrient cycling















N<sub>2</sub>O emissions (complete cycle – 108d) Oryza sativa

| Charcoal            | Total Emission.                      |
|---------------------|--------------------------------------|
| Mg ha <sup>-1</sup> | g N-N <sub>2</sub> O m <sup>-2</sup> |
| 0                   | 39.61 b                              |
| 8                   | 81.40 ab                             |
| 16                  | 62.41 b                              |
| 32                  | 114.40 a                             |
| F                   | 11.34                                |
| CV (%)              | 37.94                                |

Madari et al., 2010





Pore size distribution

Embrapa

Solos













# Model







#### **Chemical Functionalisation**

















# **Charring at field scale**



#### Retort kiln (Adapted Adam Retort)







# **Biomass Composition and Pyrolysis Yield**

| Sample   |           | nin (%) Extrative (%) |             | Holocellulose (%) |  |  |  |  |
|----------|-----------|-----------------------|-------------|-------------------|--|--|--|--|
| Epicarp  | 37        | 7.67                  | 4.49        | 57.84             |  |  |  |  |
| Mesocarp | 31        | 1.87                  | 2.06        | 66.07             |  |  |  |  |
|          |           |                       |             |                   |  |  |  |  |
|          |           |                       |             |                   |  |  |  |  |
|          |           | 350° C                | 1           |                   |  |  |  |  |
|          | Solid (%) | Conde                 | ensable (%) | Volatiles (%)     |  |  |  |  |
| Epicarp  | 58.70     |                       | 17.78       | 23.52             |  |  |  |  |
| Mesocarp | 41.59     | 45.35                 |             | 13.06             |  |  |  |  |
|          |           |                       |             |                   |  |  |  |  |
| 450 ° C  |           |                       |             |                   |  |  |  |  |
|          | Solid (%) | Conde                 | ensable (%) | Volatiles (%)     |  |  |  |  |
| Epicarp  | 50.15     |                       | 18.04       | 31.81             |  |  |  |  |
| Mesocarp | 32.64     |                       | 49.74       | 17.62             |  |  |  |  |
| -        |           |                       |             |                   |  |  |  |  |
| 550 ° C  |           |                       |             |                   |  |  |  |  |
|          | Solid (%) | Conde                 | ensable (%) | Volatiles (%)     |  |  |  |  |
| Epicarp  | 44.89     |                       | 28.06       | 27.06             |  |  |  |  |
| Mesocarp | 30.94     | 94 48.52              |             | 20.54             |  |  |  |  |





## **Biomass and char composition**

| Treatment | Moisture (%) | Ashes (%) | Volatiles (%) | Fixed C (%) | рН    | Conductivity |
|-----------|--------------|-----------|---------------|-------------|-------|--------------|
| Epicarp   |              |           |               |             |       |              |
| 350° C    | 2.35         | 11.85     | 33.08         | 55.07       | 8.32  | 1.49         |
| 450° C    | 3.83         | 13.18     | 23.67         | 63.16       | 9.99  | 2.17         |
| 550° C    | 0.95         | 15.22     | 14.44         | 70.35       | 10.06 | 2.57         |
| Mesocarp  |              |           |               |             |       |              |
| 350° C    | 0.10         | 1.94      | 30.06         | 68.00       | 7.43  | 0.17         |
| 450° C    | 0.01         | 2.26      | 23.89         | 73.86       | 7.86  | 0.19         |
| 550° C    | 0.23         | 2.52      | 18.09         | 79.39       | 8.04  | 0.25         |





# **Biomass and char composition**

| TreatmentC%H%N%O%C/NH/CIn natura $47.54$ $5.01$ $1.73$ $45.72$ $32.06$ $1.26$ $350 \degree C$ $66.30$ $4.24$ $2.30$ $27.16$ $33.63$ $0.77$ $450 \degree C$ $72.09$ $3.78$ $2.26$ $21.87$ $37.21$ $0.63$ $550 \degree C$ $77.78$ $3.29$ $2.21$ $16.73$ $41.06$ $0.51$ Mesocarp tissueIn natura $44.84$ $5.34$ $0.47$ $49.35$ $111.30$ $1.43$ $350 \degree C$ $74.94$ $4.06$ $0.50$ $20.50$ $174.86$ $0.65$ |           |       |      | Epicarp tissu | ie    |        |      |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|------|---------------|-------|--------|------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                      | Treatment | C%    | H%   | N%            | O%    | C/N    | H/C  | O/C  |
| 350° C 66.30 4.24 2.30 27.16 33.63 0.77   450° C 72.09 3.78 2.26 21.87 37.21 0.63   550° C 77.78 3.29 2.21 16.73 41.06 0.51   Mesocarp tissue   In natura 44.84 5.34 0.47 49.35 111.30 1.43   350° C 74.94 4.06 0.50 20.50 174.86 0.65                                                                                                                                                                    | In natura | 47.54 | 5.01 | 1.73          | 45.72 | 32.06  | 1.26 | 0.72 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                      | 350° C    | 66.30 | 4.24 | 2.30          | 27.16 | 33.63  | 0.77 | 0.31 |
| 550 ° C 77.78 3.29 2.21 16.73 41.06 0.51   Mesocarp tissue   In natura 44.84 5.34 0.47 49.35 111.30 1.43   350 ° C 74.94 4.06 0.50 20.50 174.86 0.65                                                                                                                                                                                                                                                      | 450° C    | 72.09 | 3.78 | 2.26          | 21.87 | 37.21  | 0.63 | 0.23 |
| Mesocarp tissue     In natura   44.84   5.34   0.47   49.35   111.30   1.43     350 ° C   74.94   4.06   0.50   20.50   174.86   0.65                                                                                                                                                                                                                                                                     | 550° C    | 77.78 | 3.29 | 2.21          | 16.73 | 41.06  | 0.51 | 0.16 |
| In natura 44.84 5.34 0.47 49.35 111.30 1.43   350 ° C 74.94 4.06 0.50 20.50 174.86 0.65                                                                                                                                                                                                                                                                                                                   |           |       |      | Mesocarp tiss | sue   |        |      |      |
| 350 ° C 74.94 4.06 0.50 20.50 174.86 0.65                                                                                                                                                                                                                                                                                                                                                                 | In natura | 44.84 | 5.34 | 0.47          | 49.35 | 111.30 | 1.43 | 0.83 |
|                                                                                                                                                                                                                                                                                                                                                                                                           | 350° C    | 74.94 | 4.06 | 0.50          | 20.50 | 174.86 | 0.65 | 0.21 |
| 450 °C 78.80 3.66 0.53 17.00 173.46 0.56                                                                                                                                                                                                                                                                                                                                                                  | 450° C    | 78.80 | 3.66 | 0.53          | 17.00 | 173.46 | 0.56 | 0.16 |
| 550°C 82.12 3.43 0.53 13.92                                                                                                                                                                                                                                                                                                                                                                               | 550° C    | 82.12 | 3.43 | 0.53          | 13.92 | 180.77 | 0.50 | 0.13 |

















# Pyrogenic carbon quantification: BPCA method (Glaser)



#### Gas-Mass cromatography

### What for? Green chemistry; For Worker, Mentheliment



- 10 more steps for sample preparation;
- More expensive;
- Time consumer;
- Pyridine.

• Difficulty to separate all BPCA

#### UV-High performance liquid cromatography





XXXIV congresso brasileiro de ciência do solo

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

#### Main Collaborators

Annibal D. Pereira Netto (UFF) Antonio S. Mangrich (UFPR) Beáta E. Madari (Embrapa Rice and Beans) Caio T. Inácio (Embrapa Soils) Carlos A. Achete (INMETRO) Claudia M.B.F. Maia (Embrapa Forestry) Eduardo R. de Azêvedo (USP-São Carlos) Fabiano C. Balieiro (Embrapa Soils) Joyce R. Araujo (INMETRO) Magale K. D. Rambo (UFT) Ruben A. Estrada (UEPG) Tito J. Bonagamba (USP-São Carlos) Aline F. Rodrigues (PUC-Rio de Janeiro) Carlos F.B.V. Alho (Wageningen University) Cristiano Dela Piccolla (ESALQ) Paulo M. V. de Paiva (Embrapa Amapá/WUR) Tatiana F. Rittl (Wageningen University) Wildson V. Cerqueira (UFF)

Embra<mark>pa</mark> 🔺

Ministério da Agricultura, Pecuária e Abastecimento



Etelvino H. Novotny – Embrapa Soils etelvino.novotny@embrapa.br

Acknowledgements:

CNPq; CORDIS-FP7; CAPES; CBPF Comissão Organizadora