

Dinâmica de substâncias húmicas em Latossolo sob sistema de cafeicultura conservacionista e controle de plantas daninhas ⁽¹⁾

Bruno Henrique Martins ⁽²⁾; Cezar Francisco Araujo-Junior ⁽³⁾; Mario Miyazawa ⁽³⁾; Karen Mayara Vieira ⁽⁴⁾.

(1) Trabalho executado com recursos financeiros do Consórcio Pesquisa Café (Plano de Ação 02.13.02.059.00.05) e do Instituto Agronômico do Paraná – IAPAR.

RESUMO: As substâncias húmicas (SH) constituem o componente majoritário da MOS, apresentando diferentes níveis de recalcitrância, sendo sensíveis a atividade de uso e manejo do solo. Objetivou-se nesse estudo avaliar a dinâmica de SH em lavoura cafeeira submetida a práticas conservacionistas de produção. O estudo foi conduzido no Instituto Agronômico do Paraná – IAPAR, em Londrina – PR. O experimento foi instalado em 2008, em blocos ao acaso com sete tratamentos e quatro replicatas, em esquema de parcela sub-dividida. Sete métodos de controle/plantas de cobertura nas entrelinhas da lavoura nas parcelas e as profundidades de amostragem do solo na sub-parcela. Em marco de 2014 e março de 2015, amostras de solo foram coletadas no centro das entrelinhas a 1,75 m do caule dos cafeeiros em quatro incrementos de profundidade (0-10 cm até 30-40 cm). SH foram extraídas através de metodologia estabelecida e o conteúdo de carbono determinado por oxidação úmida. Os resultados permitiram observar que a maior dinâmica de substâncias húmicas ocorre na profundidade de 0-10 cm. Pela análise dos dados observaram-se maiores efeitos de plantas de cobertura e métodos de controle de plantas daninhas junto às frações de ácidos húmicos e humina, com aumento do conteúdo de C observado para a segunda fração. Os resultados sugerem monitoramento constante da dinâmica de SH para otimização de práticas de agricultura conservacionista visando acúmulo de C em frações com maior recalcitrância, manutenção de fertilidade do solo e sustentabilidade da lavoura.

Termos de indexação: carbono orgânico total; plantas de cobertura; adubação verde.

INTRODUÇÃO

As substâncias húmicas (SH) são consideradas um dos principais constituintes da fração passiva da matéria orgânica do solo (MOS) (até 80 % de sua composição), compreendendo um dos maiores reservatórios de carbono orgânico do solo (Song et

al., 2014). As SH são quimicamente fracionadas em ácidos húmicos (AH), ácidos fúlvicos (AF) e humina (HU), diferindo-se entre si pela solubilidade em diferentes meios (Stevenson, 1994).

Existe uma relação de dependência entre qualidade do solo e MOS, sobretudo conteúdo de carbono em frações húmicas (Saha & Ghosh, 2013). Quaisquer alterações no conteúdo de MOS podem causar efeitos deletérios junto à fertilidade do solo, levando a alteração das propriedades químicas, físicas e biológicas (González-Ubierna et al., 2012).

Práticas de agricultura conservacionista (utilização de plantas de cobertura; redução de atividades de manejo; rotação ou consórcio de culturas) contribuem para os níveis, distribuição e qualidade de carbono orgânico total (COT) do solo por meio de (i) aporte de material fresco pela cobertura do solo por meio de resíduos vegetais e/ou plantas de cobertura, (ii) redução da taxa de mineralização e (iii) alteração nas frações de MOS (Kögel-Knabner, 2002; Zhang et al., 2011).

Estudos abordando a avaliação da dinâmica de SH, sob condições tropicais, em área de lavoura cafeeira submetida a práticas de agricultura conservacionistas em experimento de longo-prazo são cruciais. Nesse contexto, objetivou-se nesse estudo avaliar a dinâmica de SH em Latossolo sob lavoura cafeeira submetida a métodos de controle de plantas daninhas nas entrelinhas.

MATERIAL E MÉTODOS

O estudo foi conduzido em campo experimental instalado na Estação Experimental do Instituto Agronômico do Paraná – IAPAR, em Londrina – PR (23°21'30" S; 51°10'17" O). O solo da área de estudo é classificado como Latossolo Vermelho Distroférrico muito argiloso de acordo com o Sistema Brasileiro de Classificação de Solos (Santos et al., 2013). Maiores detalhes sobre condições de campo e solo são dados por Araujo-Junior et al. (2013). O estudo foi desenvolvido em uma lavoura cafeeira (*Coffea arabica L.*) implantada em 1978, com cultivar Mundo Novo IAC 379–19. Em

⁽²⁾ Pesquisador colaborador, bolsista do Programa Nacional de Pós-Doutorado / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD20132419-40075020002P1/CAPES) pelo Programa de Pós-Graduação em Agricultura Conservacionista do IAPAR; Londrina – PR; brn0321@gmail.com; ⁽³⁾ Pesquisador da Área de Solos do IAPAR; Estudante; Universidade Norte do Paraná (UNOPAR).

2008, o experimento foi delineado em blocos ao acaso com sete tratamentos em quatro replicatas, em esquema de parcela sub-dividida. Os métodos de controle das plantas daninhas nas entrelinhas da lavoura cafeeira foram considerados como fator principal nas parcelas, enquanto os incrementos de profundidade considerados como fator secundário.

Tratamentos e amostragens

Os diferentes métodos de controle/plantas de cobertura considerados foram: (i) capina manual -HAWE; (ii) roçadora mecânica portátil - PMOW; (iii) herbicidas de pré (oxyfluorfen, 240 g L⁻¹) e pós (glyphosate, 360 g L⁻¹) emergência – HERB; (iv) planta de cobertura amendoim cavalo (Arachis hypogeae) - GMAY; (v) planta de cobertura mucuna anã (Mucuna deeringiana) - GMMA; (vi) sem capina nas entrelinhas - SCAP; (vii) controle - CONT (sem capina nas entrelinhas e linhas da lavoura). Em Setembro de 2013, os cafeeiros foram manejados com poda do tipo esqueletamento (corte de todos os ramos plagiotrópicos a 20-30 cm do ramo ortotrópico) e decote do ramo ortotrópico a 1,60 m de altura da superfície do solo. Os resíduos oriundos da poda foram triturados com "triton" e mantidos nas entrelinhas dos cafeeiros para incorporação biológica. As amostras de solo foram coletadas em quatro profundidade (0-10 cm; 10-20 cm; 20-30 cm; 30-40 cm) em Marco de 2014 e Fevereiro de 2015, no centro das entrelinhas, acerca de 1,75 m da copa do cafeeiro, usando enxadão tradicional. O montante coletado foi acondicionado em sacos plásticos, temperatura ambiente, peneirados em malha de 2,0 mm de abertura, e triturados em moinho de facas. As substâncias húmicas foram extraídas de acordo com metodologia proposta por Benites et al. (2003). O conteúdo de carbono foi determinado por oxidação com dicromato (Walkley & Black, 1934).

Análise estatística

Os dados foram analisados estatisticamente pelo uso do software Origin Pro 8.0 (OriginLab, Northampton, MA), por Análise de Variância (ANOVA) por incrementos de profundidade, com p < 0,05 de nível de significância pelo teste de Tukey.

RESULTADOS E DISCUSSÃO

As Tabelas 1 e 2, e Figura 1 listam os valores do teor de carbono para ácidos fúlvicos (C-AF), ácidos húmicos (C-AH) e humina (C-HU), respectivamente. Os resultados corroboram aos observados por Ebeling et al. (2011), onde foram obtidos teores

médios de C-AH, C-AF e C-HU de 1,21, 0,68 e 10,9 kg solo 1 respectivamente, em horizontes superficiais de Latossolo Vermelho Eutroférrico em Londrina - PR, similar ao analisado no presente estudo. Pela análise dos resultados, observou-se que os valores de C-AF não apresentaram diferenças estatisticamente significativas no período e nas profundidades para as condições de campo analisadas. Devido à baixa massa molecular aparente (1.000 a 5.000 Da), os AF apresentam maior tempo de permanência na solução do solo, mesmo quando submetidos a diferentes situações (sistemas de manejo, variações de concentração salina) (Zhang et al., 2010). Dessa forma, a ausência de variação observada pode ser em decorrência da maior permanência junto à solução do solo, não havendo alteração inerente aos diferentes tratamentos considerados. Os teores de C-AH apresentaram decréscimo, em média, de aproximadamente 39 % para todos os tratamentos considerados, sendo a maior taxa de decréscimo (44 %) observada nas áreas submetidas à condição CONT (sem capina nas linhas e entrelinhas dos cafeeiros) e a menor (32 %), observada na condição PMOW (roçadora mecânica portátil). A fração AH pode ser utilizada como indicador de efeitos de sistemas de manejo do solo e demarcador do processo de humificação, uma vez que representa a parcela intermediária entre compostos estabilizados com minerais (HU) e a ocorrência de ácidos orgânicos livres (AF) (Canellas et al., 2003). Assim, através dos dados observou-se menor impacto do manejo de plantas daninha por roçadora portátil junto ao teor de C-AH dentro do intervalo de um ano (2014/2015). Através dos dados referentes ao C-HU observou-se aumento médio de 50 % nas áreas com plantas de cobertura e métodos de controle de daninhas, sobretudo plantas nas superficiais (0 - 10 cm e 10 - 20 cm). Dentre as condições de campo analisadas, considerando-se os incrementos de profundidade, observou-se aumento mais expressivo (61 %) em área submetida à cobertura da entrelinha por mucuna anã (GMMA). A humina tende a acumular-se em quantidade em camadas superficiais, levando-se em consideração a intensidade do processo de humificação em tais camadas e as características estruturais inerentes à fração (estabilização com a matriz mineral do solo e insolubilidade) (Passos et al., 2007). Logo, o perfil observado para tais áreas pode ser indicativo de de humificação em processo estágio mais avançado. Ainda, o comportamento pode ser atribuído a maior incidência de estruturas recalcitrantes (celuloses, fragmentos de lignina), precursores de material humificado, provenientes do

aporte de material vegetal (resíduos vegetais e de poda) (Flaig, 1988). Áreas de controle (CONT e SCAP) não apresentaram diferença estatisticamente significativa para as condições de campo analisadas no período considerado.

CONCLUSÕES

Os métodos mecânicos (Capina Manual e Roçadora Mecânica Portátil) e culturais por meio do emprego de plantas de cobertura (Amendoim Cavalo e Mucuna Anã) para o controle das plantas daninhas empregados no centro das entrelinhas da lavoura cafeeira sob sistema conservacionista de produção aumentaram o teor de carbono ligado a humina na profundidade de 0 – 10 cm no ano de 2015 em relação ao ano de 2014.

Aumento do teor de C da fração humina nas áreas de manejo de plantas daninhas indica possível influência de incorporação de resíduos de poda, levando a maior acúmulo de C recalcitrante e proximidade às condições de controle em campo experimental.

REFERÊNCIAS

ARAUJO-JUNIOR, C. F.; RODRIGUES, B. N..; CHAVES, J. C. D. et al. In: SOLONESKI, S.; LARRAMENDY, M., eds. Weed and pest control: conventional and new challenges. Rijeka: Intech, 2013. p.181-205.

BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Rio de Janeiro: Embrapa, 2003. 7 p.

CANELLAS, L. P.; VELLOSO, A. C. X.; MARCIANO, C. R. et al. Propriedades químicas de um cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo. Revista Brasileira de Ciência do Solo, 27:935-944, 2003.

EBELING, A. G.; ANJOS, L. H. C.; PEREIRA, M. G. et al. Substâncias húmicas e relação com atributos edáficos. Bragantia, 70:157-165, 2011.

FLAIG, W. In: FRIMMEL, F. H.; CHRISTMAN, F., eds. Humic substances and their role in the environment. New York: John Wiley, 1988. p. 75-92.

GONZÁLEZ-UBIERNA, S.; JORGE-MARDOMINGO, I.; CARRERO-GONZÁLEZ, B. et al. Soil organic matter evolution after the application of high doses of organic amendments in a Mediterranean calcareous soil. Journal of Soils and Sediments, 12:1257-1268, 2012.

KÖGEL-KNABNER, I. The macromolecular organic composition of plant and microbial residues inputs to soil organic matter. Soil Biology and Biochemistry, 34:139-126, 2002.

PASSOS, R. R.; RUIZ, H. A.; MENDONÇA, E. S. et al. Substâncias húmicas, atividade microbiana e carbono orgânico lábil em agregados de um Latossolo Vermelho Distrófico sob duas coberturas vegetais. Revista Brasileira de Ciência do Solo, 31:1119-1129, 2007.

SAHA, R. & GHOSH, P. K. Soil organic carbon stock, moisture availability and crop yield as influenced by residue management and tillage practices in maizemustard cropping system under hill agro-ecosystem. National Academy Science Letters, 36:461-468, 2013.

SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C. et al. Sistema Brasileiro de Classificação de Solos. 3 ed. Brasília: Embrapa, 2013. 353 p.

SONG, X.; LIU, S.; LIU, Q. et al. Carbon sequestration in soil humic substances under long-term fertilization in a wheat-maize system from North China. Journal of Integrative Agriculture, 13:562-569, 2014.

STEVENSON, F. J. Humus chemistry: genesis, composition, reactions. New York: John Wiley, 1994. 496 p.

WALKLEY, A. & BLACK, I. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38, 1934.

ZHANG, X.; WANG, K.; ERVIN, E.H. Optimizing dosages of seaweed extract-based cytokinins and zeatin bioside for improving creeping bentgrass heat tolerance. Crop Science, 50:316-320, 2010.

ZHANG, M.; HE, Z.; ZHAO, A. et al. Water-extractable soil organic carbon and nitrogen affected by tillage and manure application. Soil Science, 176:307-312, 2011.

Tabela 1 – Teor de carbono ligado a ácidos fúlvicos em amostras de um Latossolo submetido à cafeicultura conservacionista e métodos de controle de plantas daninhas.

Teor de C em Ácidos Fúlvicos, mg C – AF . g solo ⁻¹											
	0-10 cm		10-20 cm		20-30 cm		30-40 cm				
	2014	2015	2014	2015	2014	2015	2014	2015			
SCAP ⁽¹⁾	1.38a	1.44a	1.88a	1.41a	1.57a	1.25a	1.19a	1.34a			
	$(0.11)^{(2)}$	(0.32)	(0.32)	(0.26)	(0.17)	(0.17)	(80.0)	(0.23)			
HAWE	1.84a	1.12a	1.78a	1.16a	1.86a	1.20a	1.64a	1.15a			
	(0.34)	(0.13)	(0.26)	(0.30)	(0.44)	(0.31)	(0.34)	(0.25)			
PMOW	2.04a	1.45a	1.33a	0.97a	1.62a	1.19a	1.74a	1.30a			
	(0.36)	(0.19)	(0.30)	(0.40)	(0.20)	(0.40)	(0.27)	(0.22)			
GMAY	1.43a	1.21a	1.86a	1.07a	1.57a	1.30a	1.21a	1.01a			
	(0.51)	(0.53)	(0.22)	(0.26)	(0.28)	(0.13)	(0.29)	(0.32)			
HERB	1.86a	1.09a	1.74a	1.01a	1.45a	1.01a	1.24a	1.29a			
	(0.32)	(0.37)	(0.36)	(0.36)	(0.34)	(0.24)	(0.19)	(0.20)			
GMMA	1.82a	1.45a	1.71a	1.49a	1.70a	1.34a	1.70a	1.22a			
	(0.26)	(0.15)	(0.24)	(0.17)	(0.34)	(0.09)	(0.28)	(0.25)			
CONT	2.07a	1.59a	1.53a	1.12a	1.94a	1.16a	1.64a	0.82b			
	(0.36)	(0.18)	(0.30)	(0.20)	(0.29)	(0.17)	(0.40)	(0.20)			

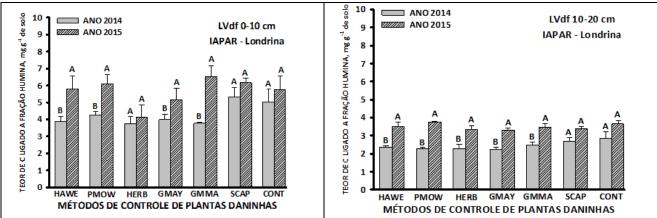

⁽¹⁾ SCAP: sem capina nas entrelinhas; HAWE: capina manual; PMOW: roçadora mecânica portátil; GMAY: planta de cobertura amendoim cavalo; HERB: herbicidas; GMMA: planta de cobertura mucuna anã; CONT: controle.

Tabela 2 – Teor de carbono ligado a ácidos fúlvicos em amostras de um Latossolo submetido à cafeicultura conservacionista e métodos de controle de plantas daninhas.

Teor de C em Ácidos Húmicos, mg C – AH . g solo ⁻¹											
	0-10 cm		10-20 cm		20-30 cm		30-40 cm				
	2014	2015	2014	2015	2014	2015	2014	2015			
SCAP ⁽¹⁾	2.50a	1.55b	2.27a	1.53b	2.20a	1.11b	2.10a	1.59a			
	$(0.14)^{(2)}$	(0.26)	(0.01)	(0.27)	(0.14)	(0.15)	(0.11)	(0.21)			
HAWE	2.63a	1.39b	2.09a	1.46b	2.19a	1.32b	2.01a	1.22b			
HAVVE	(0.04)	(0.12)	(0.26)	(0.15)	(0.15)	(0.32)	(0.17)	(0.19)			
PMOW	2.36a	1.60b	1.94a	1.57a	1.88a	1.62a	2.08a	1.44b			
PIVIOVV	(0.09)	(0.28)	(0.19)	(0.14)	(0.28)	(0.18)	(0.14)	(0.18)			
GMAY	2.21a	1.49b	2.23a	1.52b	2.10a	1.58b	2.03a	1.15b			
GWAT	(0.24)	(0.21)	(0.18)	(0.24)	(0.13)	(0.25)	(0.21)	(0.12)			
HERB	2.56a	1.43b	2.26a	1.29b	2.06a	1.23b	1.88a	1.13a			
	(0.10)	(0.39)	(0.19)	(0.43)	(0.14)	(0.42)	(0.20)	(0.42)			
GMMA	2.40a	1.55b	2.24a	1.62a	1.69a	1.27a	2.39a	1.19b			
GIVINA	(0.23)	(0.07)	(0.11)	(0.17)	(0.42)	(0.24)	(0.26)	(0.31)			
CONT	2.63a	1.80b	2.31a	1.54b	2.45a	1.21b	2.23a	0.87b			
	(0.12)	(0.13)	(0.10)	(0.13)	(0.21)	(0.17)	(0.09)	(0.10)			

SCAP: sem capina nas entrelinhas; HAWE: capina manual; PMOW: roçadora mecânica portátil; GMAY: planta de cobertura amendoim cavalo; HERB: herbicidas; GMMA: planta de cobertura mucuna anã; CONT: controle.

Valores seguidos da mesma letra na mesma linha não diferem entre si pelo Teste de Tukey (p<0,05)

Figura 1 – Teor de carbono ligado à fração humina em amostras de um Latossolo submetido à cafeicultura conservacionista e métodos de controle de plantas daninhas.

HAWE: capina manual; PMOW: roçadora mecânica portátil; HERB: herbicidas; GMAY: planta de cobertura amendoim cavalo; GMMA: planta de cobertura mucuna anã; SCAP: sem capina nas entrelinhas; CONT: controle. Médias seguidas da mesma letra nas barras verticais dentro de cada manejo comparam os teores ao longo dos anos não diferem entre si pelo Teste de Tukey (p<0,05)

⁽²⁾ Valores seguidos da mesma letra na mesma linha não diferem entre si pelo Teste de Tukey (p<0,05)