

Nodulação e Acúmulo de Nitrogênio em Espécies de Leguminosas Arbóreas do Bioma Cerrado⁽¹⁾.

<u>Izabelle Gonçalves Melo</u>⁽²⁾; Eveline Anielle Cristelli Soares⁽³⁾; Rosângela Cristina Marucci⁽⁴⁾; Christiane Abreu de Oliveira Paiva⁽⁵⁾; Ivanildo Evódio Marriel⁽⁶⁾.

(1) Trabalho executado com recursos da EMBRAPA, CAPES, FAPEMIG e CNPq.

RESUMO: Dentre as estratégias de revegetação e recuperação de solos degradados, destaca-se o uso de leguminosas arbóreas nativas do bioma de interesse. Este trabalho teve como objetivo determinar o início da nodulação e crescimento de leguminosas arbóreas do bioma Cerrado. Foram estudadas três espécies de leguminosas arbóreas: angico vermelho (Anadenanthera macrocarpa), pautrapezifolia) (Copaifera е (Amburana acreana), cultivadas em vasos de 05 kg, com dois tipos de solo - Latossolo distrófico e eutrófico. Aos 75 e 115 dias de emergência, foram avaliados a nodulação e acúmulo de massa seca, teores e acúmulo de nitrogênio na parte aérea e raízes das plantas. Os resultados mostraram diferenças significativas entre as espécies em relação ao acúmulo de biomassa e de nitrogênio. Dentre as espécies analisadas, somente plantas de angico vermelho apresentaram presença de nódulos na avaliação aos 115 dias de cultivo e com teores mais elevados de N. O acúmulo de N foi dependente da taxa de crescimento inicial de cada espécie. As diferenças entre elas permitirão selecionar espécies mais leguminosas promissoras revegetação ou recuperação de áreas degradadas sob cerrado.

Termos de indexação: revegetação, latossolo, recuperação.

INTRODUÇÃO

No Brasil, existe uma grande extensão de área de Cerrado em algum estágio de degradação, principalmente em função das atividades de mineração ou exploração agrícola sob manejo inadequado. A retirada da cobertura vegetal, dependendo da intensidade, pode ser considerada uma degradação ou uma perturbação ambiental (Corrêa & Melo, 1998).

Estas áreas geralmente perdem sua estrutura e função, sendo necessário recuperar ou reabilitar o sítio degradado. Nesses casos, a combinação da

preparação do sítio, o manejo do hábitat e a introdução de espécies nativas permitem que gradualmente o ecossistema ganhe espécies e características do sítio original (Neri et al., 2011).

A revegetação de áreas degradadas geralmente é feita com alto investimento, muitas vezes à custa da transferência da camada fértil de outras áreas. Uma opção com menor investimento na revegetação é a utilização de espécies leguminosas noduladas (Franco et al., 1991).

Em áreas degradadas, onde o teor de matéria orgânica (MO) do solo já é muito baixo, o crescimento satisfatório das plantas só é possível com a adição de grandes quantidades de composto orgânico, adição frequente de adubos nitrogenados ou usando a fonte inesgotável de N do ar através da fixação biológica (Dias et al., 2007). Segundo Franco & Baileiro (2000), dos elementos essenciais às plantas, o N é o mais limitante e o mais problemático nos sistemas produtivos. Leguminosas que fixam N2 através da simbiose com bactérias conhecidas por "Rizóbio" são importantes dos pontos de vista econômico e ecológico, pois podem dispensar total parcialmente os fertilizantes nitrogenados, contribuindo assim para viabilizar reflorestamentos e possíveis impactos minimizar ambientais decorrentes da utilização destes insumos (Barberi et al., 1998).

Dentre as várias espécies de leguminosas arbóreas, destacam-se para reflorestamento em Cerrado a *Anadenanthera macrocarpa* (angico vermelho), *Copaifera trapezifolia* (pau-d`óleo) e *Amburana acreana* (amburana), por seu potencial madeireiro para indústria moveleira, grande potencial energético, seus atributos medicinais, boa adaptabilidade a ambientes de baixa umidade e disponibilidade de nutrientes (Carvalho, 2008).

A maior parte do N está ligada à M.O., que, segundo Rezende (2003) funciona, de maneira geral, como um componente que equilibra o sistema de produção, governando a maior parte das atividades que ocorrem no solo de reter íons. Sua manutenção faz com que o solo tenha boa aeração,

⁽²⁾ Mestranda em Bioengenharia de Sistemas Ecológicos; Universidade Federal de São João Del Rei – UFSJ; São João Del Rei, Minas Gerais; Bolsista CAPES; izabellegonalves@yahoo.com.br; (3) Graduanda em Engenharia Ambiental; Centro Universitário de Sete Lagoas – UNIFEMM; Bolsista FAPEMIG; eveline.cristelli@gmail.com; (4) Professora/Doutora; Universidade Federal de Lavras; rosangela.marucci@den.ufla.br; (5) Pesquisadora/Doutora; Embrapa Milho e Sorgo; christiane.paiva@embrapa.br; (6) Pesquisador/professor; Embrapa Milho e Sorgo / UFSJ; ivanildo.marriel@embrapa.br.

permitindo a oxigenação do mesmo melhorando a circulação de água na rizosfera, aumentando a fertilidade do solo e tornando propício o desenvolvimento de microrganismos decompositores e de interação simbiótica. As plantas noduladas adquirem a capacidade de incorporar C e N ao solo, com maior capacidade de absorção de nutrientes, tornando-se mais tolerantes aos estresses ambientais (Souza & Silva, 1996).

Neste sentido, este trabalho objetivou avaliar o aumento da incorporação de N e MO em solos com espécies de leguminosas arbóreas nativas de Cerrado noduladas por Rizóbio.

MATERIAL E MÉTODOS

Os ensaios foram realizados em condições de Casa de vegetação, e analisados nos laboratórios de Química do Solo e Bioquímica e Microbiologia do Solo, ambos na Embrapa Milho e Sorgo, em Sete Lagoas, Minas Gerais. Avaliaram-se três espécies de leguminosas arbóreas: angico vermelho (A. macrocarpa), pau-d'óleo (C. trapezifolia) e amburana (A. acreana), em dois tipos de solo: Latossolo Vermelho Eutrófico Típico - Textura; Argilosa -Fase: Floresta Estacional Subcaducifólia; e o Latossolo Vermelho Distrófico Típico - Textura: Argilosa - fase: Cerrado, e quatro repetições. Os solos foram coletados na Embrapa Milho e Sorgo, região de clima considerado como Aw (tropical úmido de savana, com inverno seco) segundo a classificação de Köppen, sendo a média do mês mais quente superior a 22 °C e a do mês mais frio superior a 18 °C.

As amostras de solo foram previamente secas à sombra, peneiradas e acondicionadas em vasos de 5 kg de capacidade. Em cada vaso foram semeadas seis sementes de cada espécie de leguminosa, disponibilizadas pelo Instituto Estadual de Florestas (IEF) de Sete Lagoas, sem tratamento prévio de quebra de dormência. O teor de umidade do solo nos vasos foi mantido em torno de 70% da capacidade de campo. Aos 25 dias o plantio, efetuou-se o desbaste, deixando-se três plantas/vaso.

As plantas foram coletadas aos 75 e 115 dias após a emergência e avaliadas em relação nodulação, incorporação de massa seca e dos teores de N na parte aérea das plantas e raízes, separadamente.

Os resultados obtidos para as variáveis analisadas foram submetidos à análise de variância, e quando significativas foram comparadas através do teste de Scott-Knott a 5% de significância.

RESULTADOS E DISCUSSÃO

A figura 1 apresenta aspectos das plantas em diferentes épocas de avaliação. Por ocasião do desbaste, efetuou-se avaliação preliminar e não foi observado presença de nódulos (dados não mostrados).

Observou-se que, independente da época de avaliação e espécies avaliadas, não foram detectadas diferenças significativas em função do tipo de solo para as variáveis analisadas. Por outro lado, houve efeitos significativos da idade e da espécie da planta, bem como das interações entre os fatores para todas as variáveis analisadas.

Em relação à nodulação, somente as plantas de angico vermelho apresentaram início de formação de nódulos, mas, após 75 dias de idade (Tabela 2). Estas plantas apresentaram também maiores valores para concentração de N nas raízes e parte aérea, independente das épocas avaliadas (Tabelas 1 e 2). Entretanto, não se observou o mesmo comportamento das espécies em relação ao acúmulo de N. Este fato pode ser explicado, em parte, pelas diferenças entre as taxas iniciais de crescimento intrínsecas destes genótipos. Notou-se maior acúmulo de biomassa das plantas de paudóleo, dependente do tipo de solo.

Figura 1 – Aspectos das plantas em diferentes épocas de avaliação.

A: angico avaliado aos 25 dias de germinação; B: angico avaliado aos 55 dias de germinação; C: angico avaliado aos 115 dias de germinação; D: nódulos de Rizóbio de angico; E: raiz de pau-d'óleo aos 115 dias de germinação; F: raiz de amburana aos 115 dias de germinação.

Os resultados para nodulação diferem dos relatados por Carvalho (2008), que afirma o início de nodulação espontânea para angicos aos 60 dias de germinação.

Por outro lado a ausência de nódulos em plantas de Pau-d'óleo deve-se a incapacidade desta espécie

em formar associação simbiótica com rizóbio, de acordo Faria et. al (1984). Estes autores afirmam que esta espécie de fato não apresenta nodulação.

Os trabalhos diversos salientam a importância da utilização de espécies leguminosas arbóreas, uma vez que em simbiose com bactérias diazotróficas eleva os teores de N incorporado nas plantas, auxiliando significativamente na recuperação do solo pela deposição de folhedo com baixa relação C/N e pela ação das raízes que agregam as partículas, evitando erosão. Quanto melhor desenvolvimento da parte aérea, maior a quantidade de matéria orgânica no solo introduzida através da decomposição da serrapilheira, podendo dispensar total ou parcialmente os fertilizantes nitrogenados, contribuindo assim para viabilizar reflorestamentos e minimizar possíveis impactos ambientais decorrentes da utilização destes insumos.

CONCLUSÕES

As espécies de leguminosas avaliadas diferem em relação ao acúmulo inicial de biomassa. As plantas de angico vermelho apresentam início de nodulação após 75 dias de idade e teores mais elevados de N que demais espécies que não nodularam. O acúmulo de N nas plantas depende da taxa inicial de crescimento de cada espécie de leguminosa.

AGRADECIMENTOS

À FAPEMIG e CNPq pelo apoio financeiro. À UNIFEM, UFSJ e Embrapa Milho e Sorgo pelo apoio didático e estrutural.

REFERÊNCIAS

BARBERI, A.; CARNEIRO, M.A.C. & SIQUEIRA, J.O. Nodulação em leguminosas florestais em viveiros no sul de Minas Gerais. Cerne, v.4, n.1, p.145-153. 1998.

CARVALHO, P.E.R. Espécies arbóreas brasileiras. Brasília, DF: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas, vol. 3. II. Coleção espécies arbóreas brasileiras, v. 1-3. 2008.

CORRÊA, R.S. & MELO, B.F. Ecologia da revegetação em áreas escavadas. In: Corrêa, R.S.; Melo, B.F. (ed.). Ecologia e recuperação de áreas degradadas no Cerrado. Brasília: Paralelo 15, p. 65-99. 1998.

DIAS, L.E.; FRANCO, A.A. & CAMPELLO, E.F.C. Fertilidade do solo e seu manejo em áreas degradadas. In: NOVAIS, R.F., ALVAREZ, V., BARROS, N.F., FONTES, R.L.F., CANTARUTTI, R.B. & NEVES, J.C.L. Fertilidade do Solo, 1017 p. SBCS, Viçosa, 2007.

FARIA, S. M. de; FRANCO, A. A.; MENANDRO, M. S.; JESUS, R. M. de; BAITELLO, J. B.; AGUIAR, O. T. de & DÖBEREINER, J. Levantamento da nodulação de leguminosas florestais nativas na Região Sudeste do Brasil. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 19, p. 143-153. 1984.

FRANCO, A.A.; CAMPOS NETO, D.; CUNHA, C. de O.; CAMPELLO, E.F.C.; MONTEIRO, E.M. da S.; SANTOS, C.J.F.; FONTES, A.M. & FARIA, S.M. de. Revegetação de solos degradados. In: WORKSHOP SOBRE RECUPERAÇÃO DE ÁREAS DEGRADADAS, 1990, Itaguaí. Anais. Itaguaí: UFRRJ/Departamento de Ciências Ambientais, p.133-157. 1991.

FRANCO, A.A. & BALIEIRO, F.C.The role of biological nitrogen fixation in land reclamation, agroecology and sustentability of tropical agriculture. In: ROCHA – MIRANDA, C.E., ed. Rio de Janeiro, Academia Brasileira de Ciências, 323 p. 2000.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed. Piracicaba: Potafos, 201 p. 1997.

NERI, A.V.; SOARES, M.P.; NETO, J.A.A.M. & DIAS, L.E.; Espécies de Cerrado com potencial para recuperação de áreas degradadas por mineração de Ouro, Paracatu - MG. Revista Árvore. Viçosa, Minas Gerais. V.35, n.4, p. 907-918, 2011.

REZENDE, M.O.O.; ROSA, R.S.; MESSIAS, R.A. et al. Importância da compreensão dos ciclos biogeoquímicos para o desenvolvimento sustentável. Instituto de Química de São Carlos. Universidade de São Paulo. São Carlos: 52 p., 2003.

SOUZA, F.A. & SILVA, E.M.R. Micorrízas arbusculares na revegetação de áreas degradadas. In: SIQUEIRA, J.O., ed. Avanços em fundamentos e aplicaçõesde micorrízas. Lavras, Universidade Federal de Lavras, p: 255-290, 1996.

Tabela 1 – Teores de N, N Total e Massa Seca PARTE AÉREA de plantas de três espécies de leguminosa arbóreas do Cerrado aos 75 dias, cultivadas em dois tipos de solo. Valores médios de quatro repetições.

	P.A. 75 Dias - Solo Eutrófico			RAÍZ 75 Dias - Solo Eutrófico			
Espécie	Massa Seca	Teor N	N Total	Massa Seca	Teor N	N Total	N.N.
	g/vaso	%	mg.N/vaso	g/vaso	%	mg.N/vaso	
Angico	0,37 b	2,53 a	9,37 b	0,45 b	2,41 a	10,72 a	0,00
P. D'óleo	1,49 a	1,79 b	26,58 a	1,19 a	1,24 b	14,69 a	0,00
Amburana	0,63 b	2,42 a	15,15 b	1,26 a	1,21 b	15,25 a	0,00
	P.A. 75 Dias - Sc	olo Distrófico)	RAÍZ 75 Dias - Solo Distrófico			
Espécie	Massa Seca	N %	N Total	Massa Seca	N %	N Total	N.N.
	g/vaso	%	mg.N/vaso	g/vaso	%	mg.N/vaso	
Angico	1,02 a	2,82 a	28,74 a	1,40 a	2,33 a	32,62 a	00,00
P. D'óleo	0,53 b	2,39 b	12,52 b	0,42 b	2,04 b	8,48 b	0,00
Amburana	ND	ND	ND	ND	ND	ND	ND

PA: parte aérea; N.N.: número de nódulos; ND: sementes sem germinação.

Tabela 2 – Teores de N, N Total e Massa Seca PARTE AÉREA de plantas de três espécies de leguminosa arbóreas do Cerrado aos 115 dias, cultivadas em dois tipos de solo. Valores médios de quatro repetições.

	P.A. 115 Dias -	Solo Eutrófic	0	RAÍZ 115 Dias - Solo Eutrófico			
Espécie	Massa Seca	N %	N Total	Massa Seca	N %	N Total	N.N.
	g/vaso	%	mg.N/vaso	g/vaso	%	mg.N/vaso	
Angico	1,27 b	1,28 a	16,22 b	3,04 a	1,28 a	38,73 a	13,00
P. D'óleo	2,20 a	0,99 a	21,78 a	2,71 b	0,99 b	26,83 b	0,00
Amburana	0,40 c	0,42 b	1,65 c	1,84 c	0,42 c	7,68 c	0,00
	P.A. 115 Dias - 9	Solo Distrófic	0	RA	ÍZ 115 Dias -	Solo Distrófico	
Espécie	Massa Seca	N %	N Total	Massa Seca	N %	N Total	N.N.
	g/vaso	%	mg.N/vaso	g/vaso	%	mg.N/vaso	
Angico	0,93 b	2,25 a	20,93 b	2,29 a	2,25 a	51,41 a	0,00
P. D'óleo	2,38 a	1,23 b	29,33 a	2,37 a	1,23 b	29,21 b	0,00
Amburana	ND	ND	ND	ND	ND	ND	ND

PA: parte aérea; N.N.: número de nódulos; ND: sementes sem germinação.