

Acúmulo de N e produtividade do milho-doce em função de modos e épocas do nitrogênio em cobertura

<u>João Paulo de Morais Oliveira</u>¹; Dalton Ribeiro¹; Bruna Santos de Oliveira¹; Leandro Mariano da Silva²; Jéssica Ferreira Silva³; Adilson Pelá⁴

(1) Acadêmicos pelo Programa de Pós-Graduação em Produção Vegetal (PPGPV) pela Universidade Estadual de Goiás (UEG), Câmpus Ipameri, Rodovia: GO 330, km 241 Anel Viário s/n, CEP: 75780-000, Ipameri, Goiás, Brasil. E-mail: joaopaulo.ueg@gmail.com; (2) Estudante de graduação em agronomia pela UEG-Câmpus Ipameri, Goiás, Brasil; (3) Mestranda pelo Programa de Pós-Graduação em Agronomia em Fitossanidade pela Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brasil; (6) Professor pelo PPGPV pela UEG-Câmpus Ipameri, Goiás, Brasil.

RESUMO: O nitrogênio apresenta alta mobilidade no solo, podendo ser facilmente perdido, pela imobilização, desnitrificação. lixiviação volatilização. Diante destes agravantes, presente estudo teve como objetivo avaliar o acumulo do nitrogênio e a produtividade do milhodoce, em função dos modos e épocas de nitrogênio em cobertura. O experimento conduzido no campo experimental Universidade Estadual de Goiás, Câmpus delineamento Ipameri, em de casualizados, com oito tratamentos e quatro repetições. Os tratamentos foram compostos por: testemunha; 100% de N a lanço após plantio; 100% de N a lanço em área total V₄; 50% N a lanço em área total V₄ e V₆; 100% N a lanço em área total V₆; 100% N em filete continuo V₄; 100% N em filete continuo V₆; 50% N em filete continuo V₄ e V₆. Os dados foram submetidos à análise de variância pelo teste 'F' e as médias foram comparadas pelo teste de Tukey (p<0,05). A adubação nitrogenada em filete continuo proporcionou maiores comprimento de espiga empalhada (CEE) e produtividade de espiga empalhada (PEE). A época de aplicação de nitrogênio influencia a absorção e o acumulo de N na parte aérea do milho-doce. O modo de aplicação em filete continuo permite maior acumulo de N nos grãos se comparada à aplicação em área total.

Palavras-chave: adubação nitrogenada, manejo, parcelamento.

INTRODUÇÃO

O milho-doce (*Zea mays* (L) convar. saccharata var. rugosa) é um produto de alto valor nutritivo, tendo elevado teor de açúcar no endosperma o que lhe confere sabor adocicado. A área mundial cultivada com milho-doce é de cerca de 900 mil hectares e a área cultivada no Brasil supera 41 mil hectares, sendo 90% da área plantada concentrada no estado de Goiás, com produtividade média em torno de 12 toneladas por hectares (TEIXEIRA et al., 2013).

O nitrogênio (N) é considerado o nutriente absorvido em maiores quantidades pela cultura do milho-doce, tendo maior influência produtividade, com inúmeras funções relevantes nas suas atividades fisiológicas. A disponibilidade de N em muitos sistemas de produção é quase sempre um fator limitante, ao longo do ciclo da cultura, influenciando o crescimento da planta mais do que qualquer outro nutriente, por isso a adubação nitrogenada torna-se indispensável (CARMO et al., 2012). Além disso, o N apresenta alta mobilidade no solo, podendo ser facilmente perdido. principalmente pela imobilização, desnitrificação, lixiviação e volatilização. Por isso, procurado minimizar tem-se as maximizando a absorção e a metabolização do N no interior das plantas (ALMEIDA & SANCHES, 2012).

Diante destes agravantes, uma das opções para maximizar a eficiência dos adubos nitrogenados é determinar o modo de aplicação mais eficiente e realizar o parcelamento do N, de acordo com a época em que o adubo nitrogenado seja mais exigido pela a cultura. Desse modo, o presente estudo teve como objetivo avaliar o acumulo do nitrogênio e a produtividade do milhodoce, em função dos modos e épocas de nitrogênio em cobertura.

MATERIAL E MÉTODOS

O trabalho foi conduzido no campo experimental da Universidade Estadual de Goiás – Câmpus Ipameri, Goiás (Lat. 17º 43' 19" S, Long. 48º 9' 35" W, Alt. 773 m) no ano agrícola de 2014/2015. Segundo a classificação de Köppen, o clima da região é tropical úmido (Aw) com precipitação pluviométrica anual de 1.447mm, temperatura média de 21,9 °C, umidade relativa média do ar variando de 58 a 81%. O solo da área experimental é classificado como Latossolo Vermelho-Amarelo Distrófico (EMBRAPA, 2006), cujos atributos físico-químicos são apresentados na Tabela 1.

O plantio do milho doce (Agroceres 1051) foi realizado no dia 17/12/2014 em plantio direto,

com auxílio de uma semeadora de tração tratorizada, com oito linhas individuais espaçadas de 0,80 m, colocando sete sementes por metro.

O delineamento experimental foi em blocos casualizado (DBC), com oito tratamentos e quatro repetições. A parcela experimental foi composta por quatro fileiras (2,0 m por fileira), com espaçamento entre linhas de 0,80 m e 0,20 m entre plantas.

Os tratamentos foram compostos por: Testemunha (sem aplicação de N em cobertura); aplicação de 100% de N a lanço em área total, após o plantio; aplicação de 100% de N a lanço em área total, no estádio V_4 ; aplicações de 50% de N a lanço em área total, no estádio V_4 e V_6 ; Aplicação de 100% de N a lanço em área total, no estádio V_6 ; aplicação de 100% de N em filete contínuo, no estádio V_4 ; aplicação de 100% de N em filete contínuo, no estádio V_6 ; aplicações de 50% de N em filete contínuo, no estádio V_4 e V_6 .

A adubação de base foi efetuada utilizando-se o formulado NPK 05-25-15, sendo aplicado 55,5 kg de N ha-1, 277,8 kg de P₂O₅ ha-1 e 166,7 kg de K₂O ha-1 em todos os tratamentos. As adubações nitrogenadas de cobertura foram efetuadas de acordo com os tratamentos mencionados, utilizando-se como fonte de N a uréia. O manejo de plantas daninhas foi realizado pelas aplicações de Atrazine® em pré-emergência e Tembrotiona® em pós-emergência. O controle das pragas foi efetuado com aplicação do inseticida de contanto e ingestão Premio® com concentração de 125 ml/ha e do inseticida de regulador de crescimento Intrepid 240SC com concentração de 180 ml/ha.

Durante a fase reprodutiva no estádio R₁ (pendoamento) foi avaliado altura de planta (AP) em m: medida com o auxílio de uma trena, a partir do coleto até ao ponto de inserção da lâmina foliar mais alta, utilizando medidas de oito plantas por parcela aleatoriamente. No estádio R₃ (grão pastoso) as espigas foram colhidas manualmente seguindo as avaliações de: Comprimento da espiga empalhada (CEE), foi obtido medindo-se a distância entre a base e o ápice da espiga em cm; Produtividade de espiga empalhada (PEE) em Mg.ha-1, obtida com a massa das espigas com palhas colhidas e extrapolada para 1 ha.

Para a realização do teste de teor de N, foram coletadas a parte aérea de quatro plantas por parcela, nos estádios V₁₂ e R₃. Posteriormente, as plantas foram lavadas e pesadas para determinar a massa úmida, em seguida foram armazenadas em sacos de papel e colocadas para secar em estufa com circulação de ar forçado mantendo-se a temperatura na faixa de 65 a 70°C, até as amostras atingirem peso constante. Posteriormente, as amostras foram moídas e submetidas análises às químicas.

determinação das concentrações de N no Laboratório de Fertilidade do Solo na Universidade Estadual de Goiás (UEG), Câmpus Ipameri, segundo o procedimento descritos por Malavolta et al. (1997). De posse desses resultados, foram estimadas as quantidades acumuladas desse nutriente por planta e a quantidade obtida extrapolada para 1 ha (kg.ha-1), de acordo com os tratamentos.

Os dados foram submetidos à análise de variância pelo teste 'F' ao nível de 0,05 de probabilidade e as médias foram comparadas pelo teste de Tukey com auxílio do programa estatístico Sistema para Análise de Variância - SISVAR®.

RESULTADOS E DISCUSSÃO

Para a característica altura de planta (AP), as épocas e modo de aplicação de N em cobertura não apresentaram diferença significativa entre os tratamentos, com média de altura de 2,03 m. Resultados semelhantes foram obtidos por Rodrigues et al. (2011), quando estimaram os parâmetros genéticos e fenotípicos, para as características relacionadas com a produção do milho-doce, apresentando média de altura de plantas de 1,85 m. Segundo Kumar & Singh (1999), a altura de planta ideal para facilitar a colheita do milho-doce varia de 2 a 2,5 m.

O comprimento de espiga empalhada (CEE) é um requisito muito importante na comercialização do milho-doce, quando é destinada para feiras livres e quitandas. Para esta característica avaliada, observa-se que houve significativa e todos os tratamentos foram superiores a testemunha, exceto o tratamento com 100% de N a lanço após o plantio. Porém a maior média de CEE foi com aplicação de 100% de N em filete continuo no estádio V4, com 22,85 cm. Resultados semelhantes foram obtidos por Cardoso et al. (2011) quando avaliaram a performance de cultivares de milho-doce no Município de Teresina, Piauí, classificando espigas verdes empalhadas com comprimentos 26.4 cm. como adequadas comercialização in natura.

A produtividade de espiga empalhada (PEE) é um parâmetro importante a ser considerado na comercialização do milho doce, devido à maior conservação dos grãos. Para PEE houve diferença significativa e cinco tratamentos foram superiores a testemunha. O tratamento com 100% de N em filete continuo, no estádio V₄, destacou-se com maior PEE, 32,7 Mg.ha⁻¹, sendo 30% superior a testemunha. Essas produtividades foram superiores aos de Freire et al. (2010), que com o fornecimento de uréia em cobertura

obtiveram produtividade máxima de 14,8 Mg.ha⁻¹ de espigas verdes com palha.

Para a variável acumulo de N na parte área do milho-doce no estádio V₁₂, observa-se na Tabela 3 que houve diferença significativa e três tratamentos foram superiores a testemunha. Os tratamentos com: 50% de N a lanço nos estádios V₄ e V₆; 100% de N a lanço após o plantio; e 100% N em filete continuo no estádio V₄, se destacaram e apresentaram as maiores medias de N acumulado com 143,66, 133,49 e 129,75 kg.ha⁻¹, respectivamente. Desse modo, a época de aplicação de N logo após o plantio e no estádio V₄ promoveram maiores absorção e acúmulo de N no estádio V₁₂, provavelmente em função deste nutriente estar disponível para as plantas por um maior período de tempo.

O acumulo de N no estádio R₃ para as diversas partes das plantas de milho-doce (parte aérea sem os grãos, grãos e parte aérea total) foram significativos e todos os tratamentos diferiram estatisticamente da testemunha, como pode ser observado na Tabela 3. Os maiores valores médios de N acumulado na parte aérea sem os grãos e na parte aérea total, foram observados para os tratamentos com: 100% de N em filete contínuo e 100% de N a lanço em área total no estádio V₆, com média de 301,89 e 286,59 kg.ha-1, para o N acumulado na parte aérea sem os grãos, e 370,70 e 352,86 kg.ha-1, para a parte aérea total, respectivamente. A época de aplicação do N no estádio V₆ foi determinante е proporcionou os maiores acumulos de N no estádio R3, tanto para a parte aérea sem os grãos como para a parte aérea total, na cultura do milho-doce.

Os resultados deste trabalho não correspondem com os resultados obtidos por Borin et al. (2010), quando avaliaram a absorção e acumulo de nitrogênio na cultura do milho-doce cultivado em condições de campo, cuja a extração total de nitrogênio pela parte aérea foi de 123,05 kg.ha⁻¹.

Os tratamentos com: 100% N em filete continuo no estádio V_4 ; 50% N em filete continuo nos estádios V_4 e V_6 ; e 100% N em filete continuo no estádio V_6 , apresentaram os maiores valores médios de N acumulado nos grãos com 79,77, 70,62 e 68,81 kg.ha⁻¹, respectivamente. Quando o nitrogênio foi parcelado e aplicado em filete continuo proporcionou maiores acúmulos de N nos grãos em relação a aplicação em área total.

CONCLUSÕES

A adubação nitrogenada em filete contínuo na cultura do milho doce proporcionou maiores CEE e PEE.

A época de aplicação de nitrogênio influencia a absorção e o acumulo de N na parte aérea do milho-doce.

O modo de aplicação em filete contínuo permite maior acumulo de N nos grãos se comparada à aplicação em área total.

AGRADECIMENTOS

À CAPES pela bolsa de estudo concedida, ao Programa de Pós-graduação em Produção Vegetal e a Universidade Estadual de Goiás Câmpus-Ipameri.

REFERÊNCIAS

ALMEIDA, R. F.; SANCHES, B. C. Fertilizantes nitrogenados com liberação lenta e estabilizada na agricultura. Revista Verde, Mossoró, RN, v. 7, n. 5, p. 31-35, 2012.

BORIN, A, L, D, C; LANA, R, M, Q.; PEREIRA, H, S. Absorção, acúmulo e exportação de macronutrientes no milho doce cultivado em condições de campo. Ciência e Agrotecnologia, Lavras, v. 34, p. 1591-1597, 2010.

CARDOSO, M. J.; RIBEIRO, V. Q.; MELO, F. B. Performance de cultivares de milho-verde no município de Teresina, Piauí. Embrapa Meio-Norte. Comunicado Técnico 227, p 1-4, 2011.

CARMO, M. S.; CRUZ, S. C. S.; SOUZA, E. J.; CAMPOS, L. F. C.; MACHADO, C. G. Doses e fontes de nitrogênio no desenvolvimento e produtividade da cultura de milho doce (*Zea mays* convar. *saccharata* var. *rugosa*). Bioscience Journal, Uberlândia, v. 28, p. 223-231, 2012.

EMBRAPA. Centro nacional de pesquisa de solos. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro: Embrapa Solos, 306 p., 2006.

FREIRE, F. M.; VIANA, M. C. M.; MASCARENHAS, M. H. T.; PEDROSA, M. W.; COELHO, A. M.; ANDRADE, C. L. T. Produtividade econômica e componentes da produção de espigas verdes de milho em função da adubação nitrogenada. Revista Brasileira de Milho e Sorgo, v. 9, n. 3, p. 213-222, 2010.

KUMAR, T. V.; SINGH, V. S. Genetic variability studies for baby corn in maize (*Zea mays* L.). Agricultural Science Digest, Karnal, v.19, n. 1, p. 67-71, 1999.

MALAVOLTA, E.; MOREIRA, A. Nutrição e adubação do cafeeiro adensado. Piracicaba: Informações Agronômicas, n. 80, p. 1-7, 1997.

RODRIGUES, F.; PINHO, R. G. V.; ALBUQUERQUE, C. J. B.; PINHO, É. V. R. V. Índice de seleção e estimativa de parâmetros genéticos e fenotípicos para características relacionadas com a produção de milhoverde. Ciência e Agrotecnologia., Lavras, v. 35, n. 2, p. 278-286, 2011.

TEIXEIRA, F. F.; GAMA, E. E. G.; PAES, M. C. D.; COSTA, F. M. Aspectos agronômicos e de qualidade de espiga em famílias endogâmicas de milho-doce. Sete Lagoas: Embrapa Milho e Sorgo, Circular Técnica 121, p. 6, 2009.

Tabela 1. Características químicas do solo, na profundidade de 0 a 20 cm, amostrado antes da instalação do experimento.

Drofundidada	pH em	M.O.	P-Mehlich	Complexo Sortivo (cmol.dm ⁻³)						\/0/	
Profundidade	CaCl ₂	(g.dm ⁻³)	(mg.dm ⁻³)	K	Ca	Mg	Αl	H+Al	SB	CTC	V%
0 a 20	4,8	2,9	5,6	0,12	1,2	0,4	0,10	3,80	1,73	5,53	31

M.O. = Matéria orgânica; V% = saturação de bases; SB = Soma de bases.

Tabela 2. Valores médios de altura de planta (AP), comprimento da espiga empalhada (CEC) e produtividade de espiga empalhada (PEE).

Modo e época de aplicação de N em cobertura	AP		
Modo e epoca de aplicação de N em cobertura	(m)	(cm)	(Mg.ha ⁻¹)
Testemunha	1,90a	18,98c	22,97b
100% de N a lanço após plantio	1,98a	20,17bc	28,33ab
100% de N a lanço em área total V ₄	2,08a	22,32ab	27,34ab
50% N a lanço em área total V ₄ e V ₆	2,15a	22,17ab	30,30a
100% N a lanço em área total V ₆	2,09a	21,69ab	28,66a
100% N em filete continuo V ₄	2,00a	22,85a	32,70a
100% N em filete continuo V ₆	2,06a	21,70ab	29,64a
50% N em filete continuo V ₄ e V ₆	2,04a	22,38ab	29,64a
CV(%)	6,92	5,12	8,25

Médias seguidas de mesma letra na coluna, não diferem entre si pelo teste de Tukey (P<0,05).

Tabela 3. Quantidade acumulada de N nas plantas de milho doce, em função do modo e época de aplicação de nitrogênio em cobertura.

	Nitrogênio acumulado						
Modo e época de aplicação de N em cobertura	Parte aérea (V ₁₂) (kg.ha ⁻¹)	Parte aérea sem grãos (R₃) (kg.ha⁻¹)	Grãos (R₃) (kg.ha⁻¹)	Parte aérea total (R₃) (kg.ha ⁻¹)			
Testemunha	74,27b	136,45b	35,54b	171,99b			
100% de N a lanço após plantio	133,49a	266,38a	68,53a	334,91a			
100% de N a lanço área total V ₄	124,59ab	258,48a	66,65a	325,13a			
50% N a lanço área total V ₄ e V ₆	143,66a	245,74a	64,15a	309,89a			
100% N a lanço área total V ₆	115,82ab	286,59a	66,27a	352,86a			
100% N em filete continuo V ₄	129,75a	254,32a	79,77a	334,09a			
100% N em filete continuo V ₆	120,37ab	301,89a	68,81a	370,70a			
50% N em filete continuo V ₄ e V ₆	118,59ab	274,62a	70,62a	345,24a			
CV(%)	19,46	17,85	18,46	16,02			

Médias seguidas de mesma letra na coluna, não diferem entre si pelo teste de Tukey (P<0,05).