

Modificações químicas do solo na camada arável, em função de doses de gesso e potássio na produção de couve-flor⁽¹⁾.

<u>Hamilton César de Oliveira Charlo</u>⁽²⁾; Juliano da Silva Martins de Almeida⁽³⁾; Édimo Fernando Alves Moreira⁽⁴⁾; Renata Castoldi⁽⁵⁾; Valdeci Orioli Júnior⁽⁶⁾; Moilton Ribeiro Franco Júnior⁽⁷⁾.

(1) Trabalho executado com recursos da Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG.
(2) Professor Doutor; Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM), Uberaba, Minas Gerais; hamiltoncharlo@iftm.edu.br; (3) Doutorando; Universidade Federal de Uberlândia (UFU); (4) Professor; Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM); (5) Professora; Universidade Estadual de Minas Gerais (UEMG); (6) Professor; Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM); (7) Professor; Universidade Federal de Uberlândia (UFU).

RESUMO: O gesso é um resíduo produzido em grandes quantidades no processo de produção de fertilizantes fosfatados, fazendo-se necessário se dar um destino adequado a este rejeito.Com o objetivo de se verificar a viabilidade da utilização de gesso, aliado à aplicação de potássio, na produção de couve-flor, foi realizado um experimento, em campo, em Uberaba-MG. Com base nas características químicas do solo, calculouse a adubação química de plantio, a qual foi realizada para todos os tratamentos, constando de 50 kg ha¹ de P₂O5 e 30 kg ha¹ de N e 20% das doses de potássio para cada um dos tratamentos. Utilizou-se delineamento de blocos ao acaso, em esquema fatorial 5x5, com 3 repetições, sendo avaliadas 5 doses de gesso (0; 500; 1000; 2000; 4000 kg ha⁻¹) e 5 doses de K₂O (0, 100, 180, 240 360 kg ha⁻¹). Ao final do ciclo da cultura, coletaramse amostras de solo em cada parcela, na camada de 0-20cm, para avaliação da soma de bases e teores de cálcio, potássio e alumínio. Para análise dos dados, utilizou-se do método de seleção múltipla, e, para seleção do modelo de regressão, o método backward stepwise selection, utilizando-se o software R. Não houve interação entre os fatores avaliados. Na maior dose de gesso verificaram-se os maiores valores de soma de bases e teor de cálcio, bem como os menores teores de alumínio. Já o potássio influenciou apenas nas características soma de bases e teor de potássio, sendo que os maiores valores foram observados na maior dose de K₂O.

Termos de indexação: fertilidade, soma de bases, resíduos.

INTRODUÇÃO

Os resíduos de origem industrial são os mais preocupantes devido ao alto poder de poluição do ar, da água e do solo, necessitando então de disposição e tratamento adequado. Dentre entes resíduos destaca-se o fosfogesso (Araújo & Fernandes, 2013).

Este resíduo, produto resultante do processo de fabricação do ácido fosfórico, consiste de sulfato de cálcio di-hidratado (CaSO₄.2H₂O), também conhecido como gesso agrícola ou fosfogesso.

De acordo com Raij (1988), a composição química média do fosfogesso é em torno de 17,7% de enxofre (S), 30,9% de óxido de cálcio (CaO), 0,2% de flúor (F) e 0,7% de fósforo (P_2O5), caracterizando-se, desta forma, em um bom condicionador de solos.

A olericultura é um ramo da agricultura que demanda de solos com boa fertilidade, visto que, a maioria das culturas extraem de grandes quantidades de nutrientes. De acordo com Castoldi et al. (2009) na cultura da couve-flor, a extração de macronutrientes se da na ordem N>K>Ca>S>Mg>P, sendo que o K, o Ca e o Mg estão entre os quatro nutrientes mais absorvidos pela cultura, e, destes, o Ca e o S estão presentes no gesso.

Diante do exposto, o presente trabalho tem por objetivos avaliar as modificações químicas na camada arável do solo, em função da aplicação de gesso e potássio na cultura da couve-flor.

MATERIAL E MÉTODOS

O experimento foi conduzido em campo, no município de Uberaba, MG. O solo da área experimental pertence à classe textural Franco Argilo Arenosa. Para se avaliar a fertilidade do solo foram coletadas amostras de solo, com a profundidade de 0 – 20 cm, cujas características químicas foram analisadas pelo Laboratório de Análise de Solo da Empresa de Pesquisa Agropecuária de Minas Gerais – EPAMIG, em Uberaba, MG. Os resultados da análise química do solo foram: M.O. (g kg⁻¹)= 21,0; pH em água= 4,66; P (mg dm⁻³)= 39,33; K (mmolc dm⁻³)=1,49; Ca²⁺ (mmolc dm⁻³)= 12,53; Mg²⁺ (mmolc dm⁻³)= 3,48; Al³⁺ (mmolc dm⁻³)= 4,06; H + Al (mmolc dm⁻³)= 32,66; SB (mmolc dm⁻³)= 17,49; CTC (mmolc dm⁻³)= 50,16; V%= 34,55.

Foi realizada a calagem, para elevação da saturação por bases a 70%. Posteriormente, a área

foi preparada por meio de preparo convencional, com aração, gradagem e levantamento dos canteiros. Os canteiros foram levantados com rotoencanteirador tratorizado, com largura de 1,1 m e altura de 0,2 m. O gesso foi aplicado nas parcelas em área total, sem realização de incorporação. Já para a incorporação dos fertilizantes foram feitos, em cada canteiro, dois sulcos para a aplicação, com posterior incorporação dos mesmos.

As correções do solo seguiram a recomendação oficial para o Estado de Minas Gerais, sugerida por Fontes (1999). Na adubação de plantio, foram aplicados 50 kg ha $^{-1}$ de P_2O_5 , utilizando-se como fontes o superfosfato simples; e, 20% de cada uma das doses de K_2O e 20% da dose recomendada de N, utilizando-se como fonte cloreto de potássio e ureia, respectivamente. As adubações de cobertura foram realizadas aplicando-se o nitrogênio e as doses de K_2O da seguinte forma: 20% na primeira cobertura, aos 15 dias após o transplante (DAT); 30% na segunda adubação de cobertura, aos 30 DAT; e, 30% na terceira adubação de cobertura, aos 45 DAT.

As sementes da cultivar Sharon foram produzidas em bandejas de 128 células, sob estufa, recebendo de 4 a 5 irrigações ao dia. As mudas foram transplantadas para o local definitivo de cultivo, em 05/11/2014, aos 34 dias após a semeadura, quando apresentavam de 4 a 5 folhas definitivas.

Foram realizadas adubações foliares de boro e molibdênio, durante a fase de mudas (20 dias após a semeadura) e, aos 15 e 30 dias após o transplante, utilizando-se a concentração de ácido bórico de 0,1% (1 g L⁻¹) e de molibdato de amônio de 0,05% (0,5 g L⁻¹), conforme recomendações para a cultura.

Tratamentos e amostragens

O experimento foi instalado em esquema fatorial 5x5, sendo 5 níveis de potássio (0, 100, 180, 240 e 360 kg de K₂O ha⁻¹) e 5 níveis para doses de gesso (0, 500, 1000, 2000 e 4000 kg ha⁻¹) no delineamento em blocos completos casualizados com 3 repetições. A unidade experimental foi constituída de 14 plantas, dispostas em canteiros, no espaçamento de 0,80 m entre linhas e 0,50 entre plantas. Como parcela útil, considerou-se o solo da área das 10 plantas centrais da parcela.

A colheita foi iniciada em 10 de janeiro de 2015, e finalizada em 22 de janeiro, quando então, procedeu-se a amostragem do solo, em 15 pontos em cada uma das parcelas, com auxílio de amostrador motorizado, na camada de 0-20cm. Após homegeneizada as amostras retiradas dos 15 pontos, retirou-se a amostra composta, a qual fora enviada ao Laboratório de Análise de Solos da Universidade Estadual de Minas Gerais, para avaliação da soma de bases (SB) e teores de Ca²⁺, K e Al³⁺.

Análise estatística

Para a análise dos dados experimentais foi utilizada a análise de regressão múltipla, a qual é empregada para predizer uma resposta quantitativa quando se tem múltiplas variáveis explicativas. Neste caso as variáveis respostas são os atributos químicos do solo - SB, Ca, K e Al - e as variáveis explicativas, ou preditores, são os efeitos lineares, os efeitos quadráticos e o efeito da interação - G,

K, G^2 , K^2 , GK- das doses de gesso (G) e potássio (K). A ideia geral é que para cada uma das variáveis respostas será ajustado um modelo de regressão a fim de explicar o seu comportamento em função das variáveis explicativas.

Para seleção do modelo de regressão foram obtidos os melhores modelos para cada um dos tamanhos possíveis do modelo — 1, 2, 3, 4 e 5 -, de acordo com o método backward stepwise selection (James et al., 2013).

O backward stepwise selection fornece uma eficiente alternativa para seleção dos melhores subconjuntos de variáveis em uma análise de regressão. O método começa com todos os *p* preditores, no modelo e sequencialmente deleta os preditores com menor impacto no modelo, um por vez. Aqui, o "impacto" do preditor é medido pela soma de quadrados de resíduos. Menores valores para a soma de quadrados de resíduos estão associados a uma maior importância do preditor.

Após a seleção do melhor modelo via backward stepwise selection, foi feito o teste t para os coeficientes do modelo a fim de verificar se estes eram significativos. Vale ressaltar que um modelo deve ter todos os coeficientes significativos para que este seja um modelo explicativo.

Adicionalmente foi obtido o critério de informação bayesiano (BIC), que é uma medida da qualidade de ajuste do modelo, para cada um dos modelos e em cada uma das variáveis respostas. Os melhores modelos são aqueles com baixo valor para o BIC. Outra informação importante na escolha do melhor modelo é a parcimônia, isto é, devem ser escolhidos modelos explicativos, com boa qualidade de ajuste e que sejam o mais simples possível.

Para os modelos que foram significativos foi plotado o referido modelo ajustado.

Todas as análises foram feitas utilizando o software R (R Core Team, 2014).

RESULTADOS E DISCUSSÃO

Os melhores modelos via backward stepwise selection, para a característica soma de bases, para cada um dos possíveis tamanhos – 1, 2, 3, 4 e 5 – estão apresentados na Tabela 1. É importante ressaltar que o modelo de tamanho 5 corresponde a superfície de resposta completa, isto é:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \varepsilon,$$

Onde Y é a variável resposta X_1 e X_2 são as doses de gesso (em kg ha $^{-1}$) e potássio (em kg de K_2O ha $^{-1}$) respectivamente, e $\mathcal E$ são os erros aleatórios do modelo. Assim, por exemplo, no melhor modelo de tamanho 1 tem-se apenas o coeficiente linear do gesso; no melhor modelo de tamanho 2 tem-se os coeficientes lineares do gesso e do potássio (Tabela 1), e, assim por diante.

Tabela 1. Modelos de regressão selecionados via backward stepwise selection para cada um dos possíveis tamanhos do modelo na característica soma de bases. IFTM. Uberaba, 2015.

	Variáveis explicativas				
Tamanho do modelo	G	K	G^{2}	K^2	G*K
1	"x"	""	""	1111	""
2	"x"	"x"	""	1111	""
3	"x"	"x"	""	"x"	""
4	"x"	"x"	""	"x"	"x"
5	"x"	"x"	"x"	"x"	"x"

^{*} G=doses de gesso; K=doses de potássio.

Os modelos que foram selecionados via backward stepwise selection foram ajustados e seus coeficientes foram testados (Tabela 2). Nota-se que, pelo teste t a 5 % de probabilidade, os modelos de tamanho 1 e 2 foram significativos ($p-valor < \alpha$). Entre os dois modelos foi escolhido o modelo de tamanho 2, uma vez que este apresentou menor BIC (Figura 1).

Figura 1. Critério de Informação bayesiano (BIC) para soma de bases em cada um dos cinco modelos selecionados pelo backward stepwise selection.

O modelo selecionado para a soma de bases pode ser escrito da seguinte maneira:

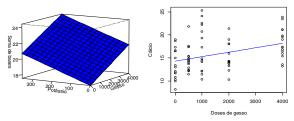
$$\hat{Y} = 17.5 + 0.000926X_1 + 0.00882X_2$$

em que, \hat{Y} é a soma de bases estimada, X_1 são as doses de gesso e X_2 são as doses de potássio. De acordo com a equação ajustada o gesso e o potássio exercem uma influência linear na soma de bases estimada, de maneira, que maiores valores para soma de bases na camada de 0-20 são esperados quanto maiores forem doses de gesso e potássio aplicados. É importante ressaltar que essa conclusão só é valida no intervalo de valores

estudado, isto é, para $0 \le X_1 \le 4000 \,\mathrm{e}$ $0 \le X_2 \le 360 \,\mathrm{c}$. De acordo com a equação ajustada (Tabela 2), tem-se ainda que, a soma de bases máxima foi de 24,38 mmolc dm⁻³, obtida com as doses de gesso e potássio de 4000 e 360 kg ha⁻¹, respectivamente (Figura 2A).

Tabela 2. Ajuste dos modelos selecionados para a característica soma de bases via backward stepwise selection e teste t para os coeficientes dos modelos ajustados. IFTM. Uberaba, 2015.

				4	
		Estimativa	Erro-padrão	tc	p-valor
Mod. 1	Int.	1.91E+01	6.57E-01	29.06	<2.0E-16**
	G	9.31E-04	3.19E-04	2.92	0.00465**
Mod. 2	Int.	1.75E+01	8.92E-01	19.663	<2.0E-16**
	G	9.26E-04	3.08E-04	3.003	0.00367**
	K	8.82E-03	3.58E-03	2.465	0.01607*
Mod. 3	Int.	1.71E+01	1.04E+00	16.433	<2.0E-16**
	G	9.25E-04	3.09E-04	2.995	0.00378**
	K	1.90E-02	1.15E-02	1.648	0.10379
	K^2	-2.83E-05	3.04E-05	-0.929	0.35617
Mod. 4	Int.	1.69E+01	1.23E+00	13.738	<2E-16**
	G	1.01E-03	5.42E-04	1.864	0.0666
	K	1.97E-02	1.22E-02	1.619	0.1101
	K^2	-2.82E-05	3.06E-05	-0.921	0.3603
	G*K	-4.90E-07	2.54E-06	-0.193	0.8474
Mod.	Int.	1.70E+01	1.34E+00	12.637	<2E-16**
	G	8.83E-04	1.28E-03	0.691	0.492
	K	1.97E-02	1.23E-02	1.609	0.112
	G^2	3.10E-08	2.81E-07	0.11	0.912
	K^2	-2.83E-05	3.09E-05	-0.916	0.363
	G*K	-4.91E-07	2.55E-06	-0.192	0.848


Mod.= Modelo; Int.= Intercepto; G=doses de gesso; K=doses de potássio. Na tabela "*" indica significativo a 5 % e "**" indica significativo a 1 %.

Os modelos ajustados selecionados para as demais variáveis - Ca, K e AI - estão apresentados na Tabela 3. Estes foram obtidos usando o mesmo raciocínio utilizado para a variável SB.

Para o teor de Ca, o modelo ajustado escolhido (Tabela 3) pode ser escrito como:

$$\hat{Y} = 14.3 + 0.000963 X_{1}$$

em que \hat{Y} é a quantidade de cálcio estimada e X_1 são as doses de gesso. De acordo com a equação ajustada, para cada acréscimo de um kg ha¹¹ de gesso aplicado, há um acréscimo de 0,000963 mmolc dm³³ no teor de cálcio estimado, na camada de 0-20 cm. O valor máximo do teor de cálcio estimado foi de, aproximadamente, 18,152 mmolc dm³³, valor este, obtido na dose de 4000 kg ha¹¹ de gesso (Figura 2B).

Figura 2. Modelos ajustados, selecionados por backward stepwise selection, teste t e critério de informação bayesiano para soma de bases (2A) e teor de cálcio (2B) na camada de 0-20 cm ao final do cultivo da cultura da couve-flor, cultivada sob diferentes doses de gesso e de K₂O.

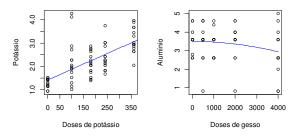
Com relação ao K, o modelo ajustado escolhido (Tabela 3) é descrito da seguinte maneira:

$$\hat{Y} = 1,4176 + 0,0045484 X_2$$

onde \hat{Y} é a quantidade de cálcio estimada e $X_2\,$ são as doses de $\mathrm{K}_2\mathrm{O}.$

Tabela 3. Modelos ajustados selecionados, teste t, para os coeficientes e critério de informação bayesiano (BIC) para os teores de Ca, K e Al na camada de 0-20 ao final do cultivo da cultura da couve-flor, cultivada sob diferentes doses de gesso e K_2O . IFTM. Uberaba, 2015.

	5						
		Estimativa	Erro padrão	tc	p-valor		
			paarao		p raio.		
Ca	Intercepto	1,43E+01	6,00E-01	23,879	<2E-16**		
	G	9,63E-04	2,91E-04	3,306	0,00147**		
	BIC= -1,8294						
K	Intercepto	1,417616	0,1247919	11,36	<2E-16**		
	K	0,0045484	0,0005824	7,81	3,2E-11**		
	BIC= - 36.9198						
Al	Intercepto	3,50E+00	1,26E-01	27,822	<2e-16**		
	G^2	-3,50E-08	1,70E-08	-2,057	0,0433*		
	BIC=4,4099						


Na tabela "*" indica significativo a 5 % e "**" indica significativo a 1 %.

Pela equação ajustada tem-se que há um efeito linear das doses de potássio na quantidade de potássio estimada na camada de 0-20 cm de maneira que para cada kg de K₂O aplicado no solo, há um acréscimo de 0,0045484 mmolc dm³ na referida camada de solo. O teor máximo estimado de potássio na camada de 0-20 foi obtido com a maior dose avaliada (360 kg há¹) de, aproximadamente, 3,0550 mmolc dm³ (Figura 3A), dentro do intervalo $0 \le X_2 \le 360$.

Para o alumínio, o modelo ajustado escolhido foi:

$$\hat{Y} = 3.5 - 0.000000035 X_1^2$$

em que \hat{Y} é o teor de alumínio estimado na camada de 0-20 e X_1 são as doses de gesso (Tabela 3). De acordo com a equação ajustada, à medida que se aumenta a quantidade de gesso há diminuição na quantidade de alumínio (Figura 3B), dentro do intervalo $0 \le X_1 \le 4000$.

Figura 3. Modelos ajustados e selecionados para o teor de potássio (3A) e alumínio (3B) na camada de 0-20cm ao final do cultivo da cultura da couve-flor, cultivada sob diferentes doses de gesso e K₂O.

CONCLUSÕES

Conclui-se que, para as condições do presente trabalho, no cultivo da couve-flor, recomenda-se a aplicação de 360 kg ha⁻¹ de K₂O, e de até 4 t ha⁻¹ de gesso.

REFERÊNCIAS

ARAÚJO, APB; FERNANDES, ALT. O passivo ambiental do fosfogesso gerado nas indústrias de fertilizantes fosfatados e as possibilidades de aproveitamento. Enciclopédia Biosfera, Goiânia, v.9, N.16, pag. 2953-2965, 2013.

CASTOLDI, R; CHARLO, HCO; VARGAS, PF; BRAZ, LT. Crescimento, acúmulo de nutrientes e produtividade da cultura da couve-flor. Horticultura Brasileira. 2009, vol.27, n.4, pp. 438-446.

FONTES P. C. R. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais — 5ª Aproximação — Viçosa, MG, p. 177. 1999.

JAMES, G., WITTEN, D., HASTIE, T., TIBSHIRANI, R. An Introduction to Statistical Learning: with aplications in R, 2013, Springer, 426 p.

RAIJ, B. van. Gesso agrícola na melhoria do ambiente radicular no subsolo. São Paulo, Associação Nacional para Difusão de Adubos e Corretivos Agrícolas, 1988. 88p.

R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2014, Vienna, Austria (http://www.r-project.org).