

Crescimento e desenvolvimento do meloeiro sob diferentes doses de adubação fosfatada e métodos de controle de pH em Argissolo (1).

Ana Jacqueline de Oliveira Targino⁽²⁾; Samuel Marcus Montorroyos Malheiros⁽³⁾; Amsterdam Armênio de Medeiros Vale⁽²⁾; Manoel Januário da Silva Júnior⁽⁴⁾; José Francismar de Medeiros⁽⁴⁾.

(1) Trabalho executado com recursos do Instituto Nacional de Ciências e Tecnologia em Salinidade (INCTSal).

RESUMO: O meloeiro (Cucumis melo L.) é a cucurbitácea de grande importância mundial em termos econômicos, tendo boa relevância para o Brasil, mais precisamente para a região Nordeste. Neste contexto, o objetivo deste trabalho foi avaliar o efeito do controle da alcalinidade e de diferentes níveis de adubação fosfatada sobre o crescimento e desenvolvimento do meloeiro em argissolo. O experimento foi conduzido em ambiente protegido onde foram usados vasos de 25 L com o Argissolo Vermelho Amarelo (PVA), coletado em área até então não cultivada. O delineamento usado foi o de blocos casualizados em esquema fatorial com 4 blocos, totalizando 12 tratamentos e 48 parcelas experimentais. O manejo da irrigação foi feito com o auxilio de baterias de tensiômetros instalados aleatoriamente na área experimental e dados de uma estação climatológica. Já o manejo da fertirrigação, foi realizado através da marcha de absorção da cultura. Não houve significância no que diz respeito a interação entre os métodos de correção de pH e as doses de fósforo, para todas as variáveis biométricas analisadas. Observando o controle ou método de controle usados para correção de pH, consta-se que todas as variáveis apresentaram efeito significativo quanto os métodos de correção de pH. Logo, o controle do pH em solos do semi-arido pode se formar uma prática de manejo a depender do tipo do solo.

Termos de indexação: Cucumis melo; Fósforo; pH do solo

INTRODUÇÃO

O melão é uma hortaliça de fruto muito apreciada e de grande popularidade no mundo. No ano 2009, a produção de melão foi de 27.726.563 toneladas, produzidas em 1.288.804 hectares, sendo os maiores produtores a China, Turquia, Estado Unidos de América e Espanha (FAO, 2011). Nesse mesmo ano, o Brasil produziu 383.193 toneladas, em 10.369 hectares. A região Nordeste foi responsável pelo 93% da produção brasileira, com destaque para os estados de Rio Grande do Norte (52.5%), Ceará (32,4%) e Bahia (8,4%) (IBGE, 2011).

Com a intensificação dos cultivos de melão, a prática de aplicação de fertilizantes exigiu maior eficiência, principalmente ao se tratar de adubos fosfatados, uma vez que o fósforo é o nutriente aplicado em maior quantidade, de acordo com as recomendações de adubação no Brasil. Este fato ocorre devido à baixa disponibilidade de fósforo nos solos tropicais associada à sua baixa mobilidade no solo e alta afinidade por óxidos de ferro e alumínio (Novais et al., 2007).

Segundo Abrêu (2010), os solos tropicais apresentam normalmente baixa concentração de fósforo disponível em solução e alto potencial de fixação do fósforo aplicado via fertilizantes. Neste sentido, o aumento da concentração deste nutriente no solo se torna uma prática importante. Visto isso, o P tem sido objeto de um grande número de trabalhos, já que é o nutriente que mais onera os custos de produção agrícola pela baixa relação matéria-seca produzida/Kg de nutriente aplicado.

Das poucas pesquisas com melão é possível destacar alguns trabalhos que buscam a otimização da adubação fosfatada com o uso de produtos que proporcionam a correção da acidez do solo (Santos et al., 2008).

Diante do exposto, o objetivo deste trabalho foi avaliar o efeito do controle do pH do solo, através do uso de enxofre elementar aplicado no solo e ácido sulfúrico aplicado a água de irrigação, e doses de fósforo sobre o crescimento e desenvolvimento do meloeiro.

MATERIAL E MÉTODOS

O experimento foi realizado, no período de dezembro de 2014 a janeiro de 2015 em casa de vegetação, nas dependências da Universidade Federal Rural do Semi Árido (UFERSA), no Departamento de Ciências Ambientais e Tecnológicas (DCAT).

O delineamento usado na instalação do experimento foi o de blocos casualizados sendo três métodos de correção da acidez (sem correção, ácido sulfúrico P.A. e enxofre) e quatro doses de fósforo, em quatro blocos, totalizando 12 tratamentos e 48 parcelas experimentais.

⁽²⁾ Mestrando em Manejo de solo e água; Universidade Federal Rural do Semi árido; Mossoró, Rio Grande do Norte; ana_jacqueline2@hotmail.com (3) Doutorando em Manejo de solo e água; Universidade Federal Rural do Semi Árido; (4) Professor Doutor; Universidade Federal Rural do Semi Árido.

As doses de fósforo foram aplicadas em fundação nas seguintes quantidades: P0 = 0 g.vaso-1; P1 = 12,07 g.vaso-1; P2 = 19,02 g.vaso-1; P3 = 25,85 g.vaso-1 de P_2O_5 21 na forma de Super Triplo que correspondem a 0 kg.ha⁻¹, 120 kg.ha⁻¹, 190 kg.ha⁻¹ e 258 kg.ha⁻¹, respectivamente. A adubação com enxofre foi feita em fundação usando uma dose de 200 kg.ha⁻¹

O Solo usado no experimento foi o Argissolo Vermelho Amarelo (PVA) coletado na fazenda experimental da UFERSA, em área até então não cultivada. O solo foi homogeneizado, peneirado e distribuídos em vasos contendo sistema de drenagem e uma capacidade de 25L. O experimento foi realizado com o melão (*Cucumis melo* L.) tipo Gália, híbrido Babilônia. A semeadura foi realizada diretamente no vaso, adotando-se o espaçamento entre vasos de 1,0 x 0,5 m.

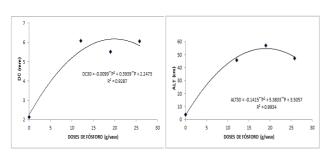
A casa de vegetação possui um sistema de irrigação contendo duas caixas d'água com capacidade para 500 L. Estas eram abastecidas com água fornecida pela Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN). Uma das caixas de irrigação passava pelo processo de correção de acidez diariamente, com o uso de ácido sulfúrico PA, com o intuito de manter o pH da água entre 5,5 a 6,0.

O sistema de irrigação era por gravidade. Cada linha experimental possuía 2 linhas laterais de irrigação (Uma proveniente de cada caixa – com correção e sem correção).

O manejo da irrigação foi feito baseado em dados de umidade obtidos com o auxilio de baterias de tensiômetros instalados aleatoriamente na área experimental (0,12 m de profundidade), na curva característica de retenção de água no solo e através de dados coletados em uma estação meteorológica.

A fertirrigação era realizada manualmente a cada 3 dias e seu manejo foi baseado na marcha de absorção da cultura. No caso do solo usado foram aplicados 4,05 g de KCl para o solo e 26,33 g de KCL para a planta, já que o solo já era suprido de potássio. Com relação a fertirrigação nitrogenada foi adicionado 6.04 g de N para a planta.

O experimento foi conduzido por 30 dias após a emergência (DAE), sendo coletados os seguintes dados para avaliação: Número de folhas(NF), Altura da planta(ALT), Diâmetro do colo (DC), área foliar(AF), Matéria seca das folhas(MS) e matéria seca total (MST).


Após a coleta dos dados, os mesmo foram tabulados e submetidos a análises prévias de variância e regressão, quando necessário, foram transformados, utilizando o programa SISVAR (Ferreira, 2011).

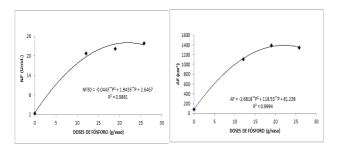
RESULTADOS E DISCUSSÃO

O cultivo no argissolo não apresentou significância no que diz respeito a interação entre os métodos de correção de pH e as doses de fósforo, para todas as variáveis analisadas. Dessa forma passa-se a analisar os resultados com base nos efeitos dos fatores principais do experimento, quais sejam: correção de pH e doses de fósforo. Os valores máximos foram obtidos através da derivação da equação. Feito esse cálculo, os valores máximos foram substituídos na equação de regressão afim de estimar a produção esperada.

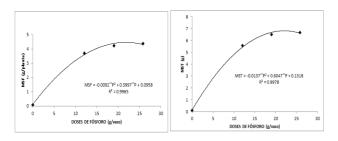
As variáveis DC e ALT não apresentaram diferença entre os tratamentos usados para correção de pH. O mais provável é que o uso de ácido sulfúrico não favoreça o desenvolvimento da planta inicialmente. A variável DC teve seu valor máximo igual a 6,66 mm com a quantidade de fósforo igual a 22,38 g.vaso⁻¹, enquanto que ALT teve um máximo de 54,71 cm com a dose de 19,02 g de P₂O₅.vaso⁻¹. Silva Júnior et al. (2010), estudando a resposta do meloeiro à fertirrigação controlada, obtiveram diâmetro do caule de 8,58 mm aos 31 DAS na condição de não utilização de N na fertirrigação e manutenção de 84 mg.L⁻¹ de potássio na solução do solo.

Figura 1. Diâmetro do colo e Altura da planta em função da dose de fósforo aplicada em melão. Mossoró - RN, UFERSA, 2015.

Com base na análise de variância percebe-se que nas variáveis AF e NF não houve diferença entre os tratamentos usados para correção de pH (Tabela 1).


Ao final do experimento o valor máximo de número de folhas foi aproximadamente 24 folhas.planta⁻¹ com a dose de 21,94 g.vaso⁻¹. Já a área foliar obteve seu valor máximo de 1390,93 cm² com a dose de 22,10 g.vaso⁻¹ (Figura 2).

Na **Tabela 1**, observa-se que todas as variáveis apresentaram efeito significativo quanto às doses de fósforo, e que o desdobramento da regressão mostra um ajuste quadrático (melhor coeficiente de determinação, **(Figura 2)** para estas variáveis e que



não houve diferença nos tratamentos usados para correção de pH.

Figura 2. Número de folhas e Área foliar em função da dose de fósforo aplicada em melão. Mossoró - RN, UFERSA, 2015.

Figura 3. Matéria seca das folhas e Matéria seca total em função da dose de fósforo aplicada em melão. Mossoró - RN, UFERSA, 2015.

O fato de não haver essa diferença entre os métodos de correção do pH e na interação deve-se provavelmente ao desenvolvimento inicialmente do meloeiro ser lento, bem como as reações que ocorrem no solo necessitam de um tempo para começar a surgir algum efeito na planta e nas características físico-químicas do solo. Além do solo ter pH ainda baixo.

Com base na análise de regressão, observa-se que a matéria seca das folhas (MSF), a matéria seca das hastes (MSH) e a matéria seca total (MST) aumentaram de forma quadrática com o aumento das doses de fósforo aplicada ao solo. Os valores máximos encontrados com base nas equações ajustadas foram respectivamente de 4,23 g; 2,39 g e 6,80 g para as doses de fósforo de 21,72; 22,11 e 22,07 g.vaso-1 (Figura 1).

CONCLUSÕES

Os métodos aplicados para estudar o pH do solo não influenciaram no crescimento do meloeiro no período avaliado.

O uso de ácido sulfúrico prejudicou o desenvolvimento do cultivo em argissolo.

A dose que melhor favoreceu o desenvolvimento do meloeiro foi igual a 22,10 g.vaso⁻¹ (221 kg.ha⁻¹).

REFERÊNCIAS

ABRÊU FLG de. 2010. **Doses de fósforo na produção e qualidade de frutos de melão amarelo**. Jaboticabal: UNESP – FCAV. 45p. (Tese doutorado).

FAO – Food and Agriculture Organization of the United Nations. 2011, 02 de março. Estadísticas (FAOSTAT). Disponível em: http://www.fao.org/corp/statistics/es/

IBGE – Instituto Brasileiro de Geografia e Estatística. 2011, 02 de abril. Produção agrícola municipal 2009. Disponível em: http://www.ibge.gov.br/estadosat/

NOVAIS, R. F.; JOT SMYTH, T.; NUNES, F. N. Fósforo. In: NOVAIS, R. F.; ALVAREZ V, V. H.; BARROS, N. F.; FONTES, R. L. F.; CANTARUTTI, R.B.; NEVES, J. C. L. **Fertilidade do solo**. Viçosa: Sociedade Brasileira de Ciências do Solo, 2007.p.471-548

SILVA JUNOR, M. J.; DUARTE, S. N.; OLIVEIRA, F. A.; MEDEIROS, J. F.; DUTRA, I. Resposta do meloeiro à fertirrigação controlada através de íons da solução do solo: desenvolvimento vegetativo. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 14, n. 7, p. 715-722, 2010.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. **Ciência e Agrotecnologia**, (UFLA). v. 35, n. 6, p. 1039-1042, 2011.

SANTOS, D. R. dos; GATIBONI, L. C.; KAMINSKI, J. Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. **Ciência Rural**, v.38, n.2, p.576-586, 2008.

Tabela 1. Análise de variância no Diâmetro do colo (DC), na Altura (ALT), na Área Foliar (AF) e no Número de folhas (NF) de melão gália cultivado no argissolo. Mossoró - RN, UFERSA, 2015.

FONTES DE VARIAÇÃO	GL	QUADRADOS MÉDIOS				
		DC	ALT	NF	AF	
Correção de pH (C)	2	0.974 ^{ns}	3.957 ^{ns}	0,060 ^{ns}	21,636 ^{ns}	
Doses de fósforo (P)	3	42.784**	79.425 ^{**}	30,094**	2150,042**	
Regressão. linear	1	92.961**	176.199 ^{**}	73,100**	5298,894**	
Regressão. quadrática	1	26.238 ^{**}	62.073 ^{**}	15,966**	1144,962**	
Desvio regressão	1	9.153 [*]	0.004 ^{ns}	1,217 ^{ns}	6,271 ^{ns}	
Interação C x P	6	3.334 ^{ns}	0.712 ^{ns}	0,428 ^{ns}	35,322 ^{ns}	
Bloco	3	0.834 ^{ns}	2.298 ^{ns}	0,690 ^{ns}	42,281 ^{ns}	
Resíduo	33	1.974	1.678	0,697	61,426 ^{ns}	
CV (%)		28.38	22.36	21,26	26,95	
CORREÇÃO DE pH	MÉDIAS					
	DC		ALT	NF	AF	
Sem correção	5	.026 a	2.478 a	1,988 a	5,515 a	
Com enxofre	5	.153 a	2.454 a	1,993 a	5,346 a	
Com ácido	4	.676 a	2.286 a	1,964 a	3,316 a	

^(**) Valores significativos pelo teste de Tukey ao nível de 1% de significância; (*) Valores significativos pelo teste de Tukey ao nível de 5% de significância; (ns) Valores não significativos pelo teste de Tukey ao nível de 5% de significância. Médias seguidas pela mesma letra não diferem entre si pelo teste de Tukey a 5% de probabilidade.

Tabela 2. Análise de variância na Matéria seca das folhas (MSF) e na Matéria seca total (MST) de melão gália cultivado no argissolo. Mossoró - RN, UFERSA, 2015.

FONTES DE VARIAÇÃO	GL -	QUADRADOS MÉDIOS			
FONTES DE VARIAÇÃO	GL —	MSF	MST		
Correção de pH (C)	2	0,018 ^{ns}	0,045 ^{ns}		
Doses de fósforo (P)	3	4,524**	8,176**		
Regressão. linear	1	11,117 ^{**}	20,182**		
Regressão. quadrática	1	2,371**	4,222**		
Desvio regressão	1	0,083 ^{ns}	0,126 ^{ns}		
Interação C x P	6	0,054 ^{ns}	0,082 ^{ns}		
Bloco	3	0,089 ^{ns}	0,198 ^{ns}		
Resíduo	33	0,110	0,180		
CV (%)		16,96	18,58		
CORREÇÃO DE pH	MÉDIAS				
CORREÇÃO DE PR	MSF		MST		
Sem correção	2,952 a		4,460 a		
Com enxofre	2,780 a		4,177 a		
Com ácido	2,694 a		3,978 a		

^(**) Valores significativos pelo teste de Tukey ao nível de 1% de significância; (*) Valores significativos pelo teste de Tukey ao nível de 5% de significância; (ns) Valores não significativos pelo teste de Tukey ao nível de 5% de significância. Médias seguidas pela mesma letra não diferem entre si pelo teste de Tukey a 5% de probabilidade