

Efeito da época de aplicação de nitrogênio na produtividade do feijoeiro-comum de ciclo superprecoce (1).

Adriano Stephan Nascente⁽²⁾; Maria da Conceição Santana Carvalho⁽³⁾; Luciana Christina Alves⁽⁴⁾; Rhenata Paula Silva Bollela⁽⁵⁾; Luis Fernando Vieira Naves ⁽⁶⁾; Leonardo Cunha Melo⁽⁷⁾

⁽¹⁾Trabalho executado com recursos do CNPq ...

RESUMO: O manejo do nitrogênio (N) em cultivares superprecoces de feijoeiro comum precisa ser validado, visto que esses genótipos possuem ciclo 40% inferior ao das cultivares tradicionais. O objetivo desse trabalho foi de determinar o efeito da época de aplicação de nitrogênio no desenvolvimento de genótipo superprecoce de feijoeiro comum. O experimento de campo foi conduzido na safra de inverno no ano de 2014, na fazenda Capivara da Embrapa Arroz e Feijão em Santo Antônio de Goiás, GO. O delineamento experimental foi o de blocos ao acaso em esquema de parcelas subdivididas, com quatro repetições. Nas parcelas estavam os genótipos de feijoeiro-comum (IPR Colibri - controle, linhagem CNFC 15873, CNFC 15874 e CNFC 15875) e nas subparcelas as épocas de aplicação do nitrogênio (90 kg de N na semeadura; 90 kg de N em cobertura; 45 kg de N na semeadura e 45 kg em aplicação de N proporciona cobertura). Α incrementos no número de vagens por planta e na produtividade de grãos do feijoeiro-comum de ciclo superprecoce. A época de aplicação de N não afeta os componentes de produção e produtividade de grãos do feijoeiro-comum de ciclo superprecoce. As linhagens de feijoeiro-comum de ciclo superprecoce apresentam valores de componentes de produção e produtividade semelhantes ao cultivar IPR Colibri.

Termos de indexação: antecipação de nitrogênio em cobertura, componentes de produção, *Phaseolus vulgaris*.

INTRODUÇÃO

A cultura do feijoeiro comum possui grande importância econômica para o Brasil, sendo produzida em três épocas denominadas época das águas, da seca e de inverno, que representam diferentes condições ambientais, considerando-se clima, solo, cultivares e nível tecnológico empregado (Wander, 2007; Nascente et al., 2013).

A utilização de cultivares superprecoces com alta produtividade pode proporcionar melhor uso da terra, como a condução de duas culturas durante o período das chuvas, ou o cultivo de até três culturas durante o mesmo ano em áreas irrigadas. Nesse contexto, existem linhagens elites de feijoeiro comum já próximas do lançamento, em fase de valor de cultivo e uso (VCU), que vêm sendo desenvolvidas dentro do Programa de Melhoramento Genético de Feijão na Embrapa Arroz e Feijão e que possuem alto potencial na produtividade de grãos e ciclo em torno de 65-70 dias, enquanto as cultivares tradicionais têm ciclo de 90-95 dias.

Entretanto, não existe nenhum tipo de estudo sobre o manejo de nitrogênio para esses materiais. Com a utilização de genótipos superprecoces, todo o manejo de nitrogênio passa a ser questionado, visto que uma planta com um ciclo 40% inferior ao das cultivares tradicionais pode não possuir estrutura vegetal e tempo hábil para absorver todos nutrientes colocados comumente para os cultivares de ciclo mais tardios, sendo fundamental o estabelecimento de recomendações de fontes, quantidade e momento de aplicação de nitrogênio para o uso eficiente desse nutriente. Um adequado e balanceado suprimento de nutrientes proporciona o pleno desenvolvimento da cultura com impacto positivo na produtividade (Malavolta, 1980; Nascente et al., 2012; Pagani & Mallarino, 2012).

O objetivo desse trabalho foi de determinar o efeito da época de aplicação de nitrogênio no desenvolvimento de genótipos de feijoeiro comum com ciclo superprecoces.

MATERIAL E MÉTODOS

O experimento foi conduzido sob irrigação por aspersão na fazenda Capivara da Embrapa Arroz e Feijão, no município de Santo Antônio de Goiás, GO, na safra de inverno de 2014. Antes da instalação do experimento foi realizada a análise química (pH, P, K, Ca, Mg, S, Zn, Fe, Mn, Cu e matéria orgânica) do solo nas profundidades de 0 a 5, 5 a 10 e 10 a 20 cm (Tabela 1). O experimento foi conduzido em área manejada sob sistema plantio direto há cinco anos, sendo cultivado em rotação

⁽²⁾ Pesquisador; Embrapa Arroz e Feijão; Santo Antônio de Goiás, Goiás; <u>adriano.nascente@embrapa.br</u>; (3) Pesquisador; Embrapa Arroz e Feijão; (4) Estudante; Uni-Anhanguera; (5) Estudante; Faculdade Montes Belos; (6) Estudante; Uni-Anhanguera; (7) Pesquisador; Embrapa Arroz e Feijão.

milho/ soja na safra de verão, *Brachiaria brizantha* na safrinha e feijoeiro comum na safra de inverno.

O delineamento experimental foi o de blocos ao acaso em esquema de parcelas subdivididas, com quatro repetições. Nas parcelas estavam os genótipos de feijoeiro-comum (IPR Colibri — controle, linhagem CNFC 15873, CNFC 15874 e CNFC 15875) e nas subparcelas as épocas de aplicação do nitrogênio (90 kg de N na semeadura; 90 kg de N em cobertura; 45 kg de N na semeadura e 45 kg em cobertura). Adicionalmente foi utilizado um tratamento controle (sem N).

A fonte utilizada foi ureia (42% de N). A aplicação do N na semeadura foi feita logo após a semeadura da cultura e a lanço. A aplicação de N em cobertura foi de probabilidade, o realizada no estádio V4 (terceira folha trifoliolada) da cultura. As parcelas tiveram as dimensões de 4,5 m (10 linhas) x 5,0 m, sendo a área útil as duas linhas centrais desprezando-se 0,50 m de cada lado. A cultivar IPR Colibri foi utilizada como controle, por ser a cultivar do grupo carioca mais precoce disponível no mercado (IAPAR, 2014).

Tabela 1 – Resultado da análise química do solo. Santo Antônio de Goiás, safra 2014.

			-,			
Prof. /1	рН	Ca	Mg	Al	H + Al	M.O.
cm	em H ₂ 0_		g kg ⁻¹			
0-5	6,2	18	14	0	38	28,0
5 a 10	5,9	17	10	0	26	24,8
10 a 20	5,7	11	7	1	23	27,8
Prof.	Р	K	Cu	Zn	Fe	Mn
cm	mg dm⁻³					
0-5	12,6	265	0,9	10,7	17,7	9,8
5 a 10	18,7	125	1,5	8,1	29,5	8,0
10 a 20	12,4	87	1,6	4,9	29,6	7,0

^{/1} Profundidade.

A semeadura do feijoeiro comum foi realizada mecanicamente no dia 20 de maio de 2014, no espaçamento de 0,50 m entre linhas e 15 sementes viáveis por metro de linha. A adubação nos sulcos de semeadura em todos os tratamentos foi de 300 kg ha⁻¹ da fórmula 00-20-20 com base na análise do solo e calculada segundo recomendação de Souza & Lobato (2003). O manejo fitossanitário da cultura foi realizado de acordo com as necessidades.

Foram determinadas as seguintes variáveis: a) número de vagens por planta: contagem do número de vagens contidas em 10 plantas, coletadas ao acaso em cada unidade experimental no momento da colheita; b) número de grãos por vagem: contagem do número de grãos contido em 10 plantas coletadas ao acaso em cada unidade experimental no momento da colheita, em seguida

dividiu-se esse valor pelo número de vagens por planta; c) massa de 100 grãos: determinada pela pesagem do número total de grãos das 10 plantas coletadas ao acaso, dividido pelo número de grãos e multiplicado por 100 em cada unidade experimental, corrigindo posteriormente o teor de água dos grãos para 130 g kg⁻¹; d) Produtividade de grãos: determinada após o arranquio manual, trilha mecânica e pesagem dos grãos na área útil de cada unidade experimental. Foi determinado a massa dos grãos colhidos e calculada a produtividade de grãos (kg ha⁻¹) e o teor de água corrigido para 130 g kg⁻¹. Os dados obtidos foram submetidos à análise de variância e teste comparativo de médias Tukey a 5% probabilidade, o tratamento controle comparado com os demais tratamentos pelo teste de Dunnett a 5% de probabilidade. Utilizou-se o

RESULTADOS E DISCUSSÃO

A aplicação de nitrogênio não afetou o número de grãos por vagem e massa de 100 grãos (Tabela 2). Por outro lado, quando não houve aplicação de nitrogênio (tratamento controle) acarretou em redução do número de vagens por planta e também na produtividade de grãos do feijoeiro-comum em relação aos tratamentos com aplicação de N em qualquer das épocas. A produtividade da cultura do feijoeiro-comum é função dos componentes de produção: número de vagens por planta, número de grãos por vagem e massa de 100 grãos (Araujo et al., 1996). Dessa forma, a redução do número de vagens por planta explica a diminuição da produtividade nas parcelas com ausência de aplicação de nitrogênio.

De acordo com Fageria (2014), o nitrogênio afeta os componentes de produção do feijoeiro-comum, e o número de vagens por planta é o componente que mais afeta a produtividade de grãos da cultura. Corroborando essas informações também Alvarez et al. (2005), Valderrama et al. (2009) e Nascente et al. (2012) relataram aumento na produtividade de grãos devido à aplicação de nitrogênio em cobertura na cultura do feijoeiro-comum.

Em relação às épocas de aplicação de nitrogênio, não se constatou diferenças entre os tratamentos para todas as variáveis avaliadas (Tabela 2). Resultados semelhantes foram relatados por Alvarez et al. (2005) e Nascente et al. (2012). Assim, a aplicação de todo o N na semeadura, todo em cobertura, ou a combinação das duas épocas proporcionou incrementos no número de vagens e produtividade de grãos. Dessa forma, pode-se inferir que a época de aplicação de N não afeta a produtividade de grãos do feijoeiro-comum de ciclo superprecoce. Esses resultados podem ser o reflexo do ciclo mais curto dos genótipos utilizados,

enquanto a adubação de cobertura para as cultivares tradicionais (ciclo de 90-95 dias) é recomendada para os 20-25 dias após a emergência (Araújo et al., 1996), as linhagens superprecoce com ciclo de 60-65 dias parecem necessitar do N mais cedo. Dessa forma, a aplicação desse nutriente todo no dia da semeadura, aos 12 dias (época em que a planta apresentava o terceiro trifólio e foi feita a adubação de cobertura) ou dividido nessas duas épocas, não afetou a produtividade da cultura.

As linhagens de feijoeiro-comum de superprecoce não tiveram valores diferentes da cultivar utilizada como padrão (IPR Colibri) nos componentes de produção e nem da produtividade de grãos (Tabela 2). Dessa Forma, a cultivar IPR Colibri apresentou produtividade de 3.268 kg ha⁻¹, valores semelhantes aos obtidos por Ferreira et al. (2008) que foi de 3.273 kg ha⁻¹. Com base nos resultados verifica-se que essas linhagens são bastante promissoras para serem utilizadas principalmente no cultivo de 3ª época (mais tecnificada), onde a produtividade média é de 2.480 kg ha⁻¹ (Nascente et al., 2012).

CONCLUSÕES

A aplicação de N proporciona incrementos no número de vagens por planta e na produtividade de grãos do feijoeiro-comum de ciclo superprecoce.

A época de aplicação de N não afeta os componentes de produção e produtividade de grãos do feijoeiro-comum de ciclo superprecoce.

As linhagens de feijoeiro-comum de ciclo superprecoce apresentam valores de componentes de produção e produtividade semelhantes ao cultivar IPR Colibri.

AGRADECIMENTOS

Os autores agradecem ao CNPq (Processo 471812/201) pelo financiamento da pesquisa.

REFERÊNCIAS

- ALVAREZ, A. C. C.; ARF, O.; ALVAREZ, R. C. F. et al. Resposta do feijoeiro à aplicação de doses e fontes de nitrogênio em cobertura no sistema de plantio direto. Acta Scientiarum Agronomy, 27:69-75, 2005.
- ARAUJO, R. S.; RAVA, C. A.; STONE, L. F. et al. A Cultura do feijoeiro comum no Brasil. Piracicaba: Associação Brasileira para Pesquisa de Potassa e do Fosfato, 1996. 786p.
- FAGERIA, N. K. Nitrogen management in crop production. CRC Press: Boca Raton, 2014. 408p.
- FERREIRA, E. G.; BRITO, O. R.; MELÉM JUNIOR, N. J. et al. Produtividade do feijão carioca IPR-colibri sob

efeito de adubação orgânica e inorgânica. In: REUNIÃO BRASILEIRA DE FERTILIDADE DO SOLO E NUTRIÇÃO DE PLANTAS, 28.; REUNIÃO BRASILEIRA SOBRE MICORRIZAS, 12.; SIMPÓSIO BRASILEIRO DE MICROBIOLOGIA DO SOLO, 10.; REUNIÃO BRASILEIRA DE BIOLOGIA DO SOLO, 7., 2008. Anais. Londrina: Embrapa Soja: IAPAR: Universidade Estadual de Londrina, 2008.

- IAPAR, IPR Colibri. Disponível em:< http://www.iapar.br/arquivos/File/zip pdf/iprcolibri.pdf > Acesso em 10 dez. 2014.
- MALAVOLTA, E. Elementos de nutrição mineral de plantas. São Paulo: Agronômica Ceres, 1980. 251 p.
- NASCENTE, A. S.; KLUTHCOUSKI, J.; CRUSCIOL, C. A. C. et al. Adubação de cultivares de feijoeiro comum em várzeas tropicais. Pesquisa Agropecuária Tropical, 42:407-415, 2012.
- PAGANI, A. & MALLARINO, A. P. Soil pH and crop grain yield as affected by the source and rate of lime. Soil Science Society of America Journal, 76:1877-1886, 2012.
- VALDERRAMA, M.; BUZETTI, S.; BENNETT, C. G. et al. Fontes e doses de nitrogênio e fósforo em feijoeiro no sistema plantio direto. Pesquisa Agropecuária Tropical, 39:191-196, 2009.
- WANDER, A. E. Produção e consumo de feijão no Brasil, 1975–2005. Informe Econômico, 37:7–21, 2007.

Tabela 2 – Número de vagens por planta (NVP), número de grãos por vagem (NGV), massa de 100 grãos (MASSA) e produtividade (PROD) de linhagens de feijoeiro comum de ciclo superprecoce em função do manejo de nitrogênio (N). Santo Antônio de Goiás, safra 2014.

Fatores	NVP	NGV	MASSA	PROD		
Manejo de nitrogênio	unidade	unidade	gramas	Kg ha⁻¹		
90 kg N na semeadura	15,06 a ^{/1/3}	4,88 a	22,75 a	$3037 a^{/3}$		
90 kg N em cobertura	14,94 a ^{/3}	4,44 a	22,94 a	3117 a ^{/3}		
45 kg N SEM e 45 kg N COB ^{/2}	15,31 a ^{/3}	4,56 a	22,69 a	3139 a ^{/3}		
0 de N	12,62	4,56	22,88	2790		
Genótipos						
IPR Colibri	14,97 a	4,63 a	23,06 a	3268 a		
CNFC 15873	15,00 a	4,88 a	21,19 b	2839 a		
CNFC 15874	15,37 a	4,50 a	23,00 a	2962 a		
CNFC 15875	16,87 a	4,44 a	24,00 a	3013 a		
Fatores	Análise de variância (probabilidade do teste F)					
Genótipos (G)	0,4201	0,6256	0,7415	0,5981		
Manejo de N (MN)	0,4174	0,5572	0,9756	0,3767		
G * MN	0,8727	0,2020	0,8425	0,3405		
Coeficiente de variação (%)	24,72	15,41	7,55	16,03		

^{/1} – médias seguidas pela mesma letra na vertical, não diferem entre si pelo teste Tukey para p<0,05. ^{/2}SEM, semeadura e COB – cobertura. ^{/3} – médias seguidas deste símbolo diferem do tratamento controle pelo teste de Dunnett para p< 0,05.