

Estoques de C e N e assinatura isotópica de ¹³C em solos com horizontes Húmicos e Hísticos de uma topossequência do Sul do Brasil⁽¹⁾.

Daniel Hanke⁽¹⁾ & Deborah Pinheiro Dick⁽²⁾

(1)Trabalho realizado com recursos do CNPq e CAPES

⁽²⁾Estudante de Doutorado em Ciência do Solo - PPGCS - Universidade Federal do Rio Grande do Sul - Porto Alegre - RS. Email: hankesolos@gmail.com

(2) Professora da Universidade Federal do Rio Grande do Sul, Instituto de Química / PPGCS. Email: debby.dick@gmail.com

RESUMO: Solos com horizontes Húmicos e Hísticos ambientes subtropicais desempenham importante função no estoque e imobilização do C. Entretanto, no Brasil ainda existem poucos estudos sobre a ocorrência e as funções que esses solos desempenham em ecossistemas naturais. objetivo desse trabalho foi investigar mecanismos de estabilização da matéria orgânica do solo (MOS) a partir de resultados de estoques de C e N e da assinatura isotópica de ¹³C, em perfis de solos com horizontes Húmicos e Hísticos do sul do Brasil. Amostras indeformadas foram coletadas diferentes profundidades em uma topossequência característica sob Floresta Ombrófila na bacia sedimentar de Curitiba / PR na APA do Iraí. Os solos foram classificados como Latossolo Bruno alumínico rúbrico (LBa), Gleissolo Melânico Ta distrófico organossólico (GMvd) e Organossolo Háplico sáprico típico (OXs). Foram determinados os estoques de C e N e a assinatura isotópica de por elementar acoplado analisador espectrômetro de massas. Até 20 profundidade, os estoques de C e N decresceram na ordem Oxs > GMvd > Lba. O estoque total estimado para a APA Iraí foi de 4,2 x 106 Mg C, o que supera em duas vezes os valores usualmente observados para outras áreas de solos altimontanos no PR. A assintatura isotópica de ¹³C da serrapilheira diferiu do respectivo valor do solo em GMvd e Oxs. indicando que a MOS desse solos se originou a partir da vegetação anterior à atual. Possivelmente, nesses solos as condições de saturação promovem a estabilização da MOS mais antiga, enquanto a MOS oriunda da vegetação atual sofre ciclagem mais intensa.

Termos de indexação: matéria orgânica, estabilização, saturação.

INTRODUÇÃO

O ciclo de C e de N são processos ecológicos fundamentais no meio ambiente e estudos sobre dinâmica dos estoques desses elementos são

extremamente relevantes devido à sua contribuição para o fluxo dos gases do efeito estufa CH_4 , CO_2 e N_2O e de seu impacto sobre os mais diversos ecossistemas.

Solos com horizontes Húmicos e Hísticos de ambientes tropicais e subtropicais desempenham funções importantes quanto ao estoque imobilização do C atmosférico (Campos et al., 2012), regulação climática e dos fluxos hidrológicos (Rieley et al., 2008), retenção de água no solo e atuação como filtro ambiental. Entretanto, no Brasil ainda existem poucos estudos relacionados às funções ambientais que esses solos desempenham em ecossistemas naturais. Dessa forma, a dinâmica da formação desses horizontes com altos teores de MOS no Brasil subtropical ainda não é bem conhecida, bem sua capacidade em estocar C e N.

Nas ultimas décadas os ciclos do C e N também tem sido estudados a partir do uso de técnicas de espectrometria de massa que possibilitam a determinação da abundância natural dos isótopos estáveis de 13 C e 15 N, em relação aos seus isótopos mais abundantes na natureza. A sensibilidade da técnica e a especificidade dos valores de δ^{13} C e de δ^{15} N em função da origem da MOS (plantas C4 ou C3) permitem utilizar a abundância desses isótopos como traçadores da fonte da MOS.

A motivação desse trabalho foi investigar a capacidade de armazenagem de C e N em perfis com horizontes Húmicos e Hísticos e os mecanismos de estabilização da MOS nesses ambientes. Para alcançar esses objetivos foram determinados os estoques de C e N e a assinatura isotópica de ¹³C em perfis de solos com horizontes Húmicos e Hísticos de uma topossequência no sul do Brasil.

MATERIAL E MÉTODOS

A área de estudos foi uma topossequência característica sob Floresta Ombrófila na bacia sedimentar de Curitiba no primeiro planalto paranaense, município de Pinhais / PR - microbacia do Rio Canguiri no interior da área de proteção

ambiental do reservatório hídrico do Iraí - APA do Iraí.

Amostras de solo indeformadas foram coletadas por meio de abertura de trincheiras nas camadas (0-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-60, 60-80, 80-100, 100-120, 120-140, 140-160, 160-180 cm) empregando cilindros de aço inoxidável para a determinação da densidade do solo (Ds), em triplicata. Os solos amostrados foram classificados como: i) Latossolo Bruno alumínico rúbrico - LBa (topo e terço superior da encosta); ii) Gleissolo Melânico Ta distrófico organossólico - GMvd (terço inferior da encosta); iii) Organossolo Háplico sáprico típico - OXs (terço inferior e planície aluvial).

Em cada local de amostragem foram coletadas amostras de serapilheira, por meio do uso de gabarito quadrado de 30 cm de comprimento de lado. A serapilheira foi dividida visualmente em duas frações: i) Serapilheira nova (LN) - fração superior da serapilheira, menos decomposta, com maior granulometria e tecidos vegetais semelhantes ao original e; ii) Serapilheira velha (LV) - fração subjacente da serapilheira que encontra-se em contato direto com o horizonte superficial, mais senescente que o litter novo, com menor granulometria e tecidos vegetais já em estágio intermediário de alteração. Cada fração da seraílheira apresentou, em média, uma espessura de 2,5 cm.

Após secagem, moagem e peneiramento das amostras de solo (0,2 mm) o teor de C e N e a assinatura isotópica de ¹³C (ō¹³C) foram determinados em analisador elementar acoplado a espectrômetro de massas (Thermo Finnigan Delta Plus).

O estoque de C e N em cada camada amostrada foi calculado segundo equação (1):

 $Ms = Ds \times Ec \times A$ (Equação 1)

onde:

Ms = Massa de solo (Mg ha⁻¹)

Ds = Densidade do solo (Mg m⁻³)

Ec = Espessura da camada (m)

A = Área de 1 ha.

Os resultados obtidos para as réplicas de cada amostra foram submetidos à estatística descritiva de desvio padrão.

RESULTADOS E DISCUSSÃO

O estoque total de C e de N nos perfis de solo analisados foram de 319, 1184 e 640 Mg C ha⁻¹ e 22, 61 e 38 Mg N ha⁻¹ para LBa, GMvd e OXs,

respectivamente (Figura 1). Em LBa o estoque de C e de N decresceu em profundidade, com exceção da posição intermediária do perfil (20-80 cm) onde o aumento foi ocasionado pela maior densidade das camadas. Já em GMvd e OXs os estoques aumentaram progressivamente em profundidade (Figura 1).

O maior estoque de C nas posições higrófilas e hidromórficas da paisagem, quando comparado com o da posição mais alta, se deve ao menor potencial redox dos ambientes sob saturação, que dificulta a atividade de organismos decompositores, associado à elevada produção de biomassa pela vegetação.

Quando comparados os perfis até 60 cm (profundidade limite para amostragem de OXs), o estoque foi maior no organossolo, seguido por GMvd e LBa. Provavelmente, a capacidade de estoque de C e N foi subestimada em OXs pela impossibilidade de amostragem de camadas mais profundas.

Assumindo-se genericamente os estoques de C observados nesse estudo e que 71,8% dos solos são representados pelas classes contempladas por esse trabalho, podemos inferir que nessa área há um estoque de 4,2 x 10⁶ Mg C onde desse total 19% são referentes aos Organossolos Hidromórficos (7,95 x 10⁵ Mg C), 36% aos Gleissolos Melânicos (1,36 x 10⁶ Mg C) e 45 % aos solos Húmicos das posições mais altas da paisagem (1,9 x 10⁶ Mg C).

A assinatura isotópica de δ¹³C das frações da serapilheira em todos os perfis variou de -29 a -30‰, descriminação característica de plantas de via fotossintética C3 (Tabela 1). Esse resultados eram esperados, uma vez que toda a topossequência do estudo encontra-se sob vegetação florestal.

Nas amostras de solo de LBa, δ¹³C variou de -26,9 a -20,4‰, sendo observada uma diminuição gradativa dos valores em profundidade. Isso pode ser devido à atividade dos organismos heterotróficos, que discriminam menos o isótopo ¹³C durante a mineralização de compostos orgânicos (Ducatti, 2007). Esse resultado sugere que a MOS de LBa é majoritariamente derivada de compostos orgânicos fixados pela via fotossintética de plantas C3.

Entretanto em GMvd e OXs, verificaram-se valores de δ^{13} C mais próximos aos observados na via fotossintética de plantas (-19,8 a -18,1‰). Esses resultados sugerem que a MOS dos solos das posições mais baixas da paisagem e com alto teor de C pode ter se originado de um outro tipo de vegetação. Essa vegetação poderia ser composta de gramíneas remanescentes de antigas formações de campos úmidos, associadas a paleo-formações florestais aluviais, que, por processos de alteração geomorfológicos e climáticos durante o final do Pleistoceno e início do Holoceno, permitiram o

avanço das espécies florestais sobre a área de campo, constituindo assim uma nova formação vegetacional.

Como análise complementar, foi determinando o $\delta^{13}C$ da maior e menor classe de agregados da camada de 0-5 cm de GMvd, antes e após a desmineralização com solução de HF 10% (v/v) (Tabela 1). Tanto para as amostras originais como desmineralizadas, $\delta^{13}C$ para as 0 microagregados (<0,25 mm) foi mais próximo ao $\delta^{13}C$ da serapilheira e raízes - plantas C3 (-23,2 e -22,5), ao passo que os macroagregados > 4 mm apresentaram um δ¹³C mais próximo ao das amostras de solo inteiro, ou seja, mais próximo da assinatura isotópica de plantas C4 (-17,5 e -17,7). Em acordo com esses dados de δ¹³C, a razão C/N dos microagregados também foi mais próxima ao valor observado na serapilheira e raízes, enquanto que na classe > 4 mm o valor se aproximou daquele das amostras de solo inteiro (Tabela 1). É possível que a MOS originária da floresta é parcialmente estabilizada pelo mecanismo de oclusão pela microagregação, enquanto que a fração da MOS mais antiga, derivada de plantas C4, é estabilizada por oclusão em agregados maiores.

CONCLUSÕES

O perfil da posição intermediária da paisagem representa o maior estoque de C e de N da toposequencia, superando em até 4 vezes o estoque do solo da posição mais alta...

Os resultados de δ¹³C e da razão C/N indicam diferentes mecanismos de estabilização da MOS na toposequencia. No Latossolo, a MOS é originária da vegetação atual (C3) sobre o solo. Já no solos GMvd e OXs a MOS é originária em grande parte de uma vegetação tipo C3, a qual é estabilizada no interior de macroagregados. A contribuição da vegetação atual C4, no solo GMVd é perceptível em microagregados.

REFERÊNCIAS

BALESDENT, J.; MARIOTTI, A.; GUILLET, B. Natural ¹³C abundance as a tracer for studies of soil organic matter dynamics. **Soil Biol. Biochem.**, 19:25-30, 1987.

CAMPOS, J.R.R; SILVA, C.A. & VIDAL-TORRADO, P. Mapping, organic matter mass and water volume of a peatland in Serra do Espinhaço Meridional. R. Bras. Ci. Solo. 36:723-732, 2012.

RIELEY, J.O.; WUST, R.A.J.; JAUHIAINEN, J.; PAGE, S.E.; WOSTEN, H.; HOOIJER, A.; SIEGERT, F.; LIMIM, S.H.; VASANDER, H. & STAHLHUT, M. Tropical Peatlands: Carbon stores, carbon gas emissions and

contribution to climate change processes. In: STRACK, M., ed. **Peatlands and climate change.** Calgary, Peat Society, 2008. p.44-70.

GRIFFITHS, H.; BORLAND, A.; GILLON, J. S.; HARWOOD, K.; MAXWELL, K.; WILSON, J. Stable isotopes reveal exchanges between soil, plants and the atmosphere. In: SCHOLES, J. D.; BARKER, M. G. (eds) **Physiological Plant Ecology**. Blackwell Science, 1999. 299p.

VITORELLO, V. A.; CERN, C. C.; ANDREAUX, F.; FELLER, C.; VICTORIA, R. L. Organic matter and natural carbon-13 distribution in forested and cultivated oxisols. **Soil Science Society of America Journal**, 53: 773-778, 1989.

Tabela 1 - Densidade do solo (Ds) , teor de C e N e assinatura isotópica de 13 C (δ^{13} C) dos solos estudados.

Lba	Ds	С	N	C/N	δ ^{13C}
	g cm ⁻³	g kg ⁻¹			%
LN	-	386.1 ±7,2	20.1 ±1,1	19	-29.1 ±0,7
LV	-	402.9 ±5,3	18.2 ±2,3	22	-27.7 ±0,1
Raíz	-	398.7 ±6,2	13.3 ±0,8	30	-28.3 ±0.3
0-5 cm	1.0 ±0,1	54.2 ±2,2	3.8 ±2,2	14	-26.9 ±1,1
5-10 cm	1.1 ±0	39.2 ±2,3	2.8 ±2,3	14	-22.7 ±1,4
10-15 cm	1.3 ±0,1	34.4 ±1,6	2.4 ±1,6	15	- '
15-20 cm	1.3 ±0,1	32.4 ±1	2.2 ±1	15	-
20-30 cm	1.5 ±0,1	29.6 ±0,7	1.8 ±0,7	16	-
30-40 cm	1.6 ±0,1	24.6 ±0,2	1.4 ±0,2	17	-21.9 ±1,6
40-60 cm	1.6 ±0,1	17.4 ±0,1	0.9 ±0,1	18	
60-80 cm	1.7 ±0	8.9 ±0,6	0.6 ±0,6	15	-
80-100 cm	1.6 ±0,1	8.2 ±0,3	0.5 ±0,3	15	-
100-120 cm	1.7 ±0	4.4 ±0	0.4 ±0	12	-20.4 ±0,3
120-140 cm	1.8 ±0	2.2 ±0,5	0.2 ±0,5	11	20.1 20,
140-160 cm	1.8 ±0	1.6 ±0,1	0.2 ±0,3 0.2 ±0,1	8	-20.6 ±0,
160-180 cm	1.9 ±0	0.9 ±0,1	0.1 ±0,1	6	-
GMvd	Ds	С	N	C/N	δ ^{13C}
	2			C/N	
LN	g cm ⁻³	g kg ⁻¹ 468.0 ±4,2	28.5 ±0,1	16	% -30.1 ±0,
LV	-	272.6 ±5,7	14.6 ±0,4	19	-28.7 ±0,
Raíz	-	231.3 ±11,2	13.6 ±0,1	17	-20.7 ±0,
0-5 cm	1.1 ±0	70.4 ±4,3	3.5 ±0,1	20	-27.5 ±0,
5-10 cm	1.1 ±0 1.2 ±0	70.4 ±4,3 70.4 ±4,2	3.0 ±0,1	23	-19.0 ±0,
10-15 cm	1.2 ±0 1.2 ±0	70.4 ±4,2 79.5 ±2,9	3.7 ±0,4	23	_
15-20 cm	1.4 ±0	79.5 ±2,9 70.0 ±3,7	3.4 ±0,4	21	-18.1 ±0,
20-30 cm	1.4 ±0 1.5 ±0	70.0 ±5,7 77.2 ±5,5	3.4 ±0,7 3.2 ±0,2	24	-18.3 ±0,
	1.6 ±0		,		-10.5 ±0,
30-40 cm			3.2 ±0,3	21 17	
40-60 cm	1.6 ±0	67.9 ±1,4	4.0 ±0,1		-18.3 ±0,
60-80 cm	1.8 ±0	74.3 ±3,8	4.3 0.3	17	40.0 .0.
80-100 cm	1.7 ±0,1	89.8 ±3,9	4.5 ±0,3	20	-18.8 ±0,
0-5 >4 mm	-	58.0 -	2.3 -	25	-17.8
0-5 >4 mm (HF)	-	411.2 -	17.9 -	23	-17.7
0-5 <0,25 mm 5 <0,25 mm (HF)	-	73.6 - 395.1 -	6.1 - 29.3 -	12 13	-23.2 -21.5
·5 <0,25 IIIII (HF)	-	393.1 -	29.3 -	13	-21.5
Oxs	Ds	С	N	C/N	δ^{13C}
_	g cm ⁻³	g kg ⁻¹	-	-	‰
LN	<u> </u>	484.4 ±8,2	20.3 ±1,2	24	-29.4 ±4,2
LV	-	435.3 ±15,3	23.7 ±0,7	18	-30.1 ±5,
Raíz	-	351.4 ±11,9	15.5 ±1,4	23	-18.5 ±11
0-5 cm	0.8 ± 0.1	142.6 ±5,3	9.1 ±0,4	16	-19.5 ±1
5-10 cm	0.8 ±0	168.9 ±3,7	11.1 ±0,3	15	-
10-15 cm	0.7 ±0	169.2 ±1,9	10.9 ±0,4	16	_
15-20 cm	0.7 ±0	176.2 ±2,9	10.7 ±0,2	16	-18.0 ±0,
20-30 cm	0.7 ±0	167.2 ±0,5	9.5 ±0	18	-
30-40 cm	0.7 ±0	159.3 ±2	8.6 ±0,1	19	-18.3 ±0,
40-60 cm	0.9 ±0,1	100.9 ±0,4	5.1 ±0	20	-18.9 ±0,

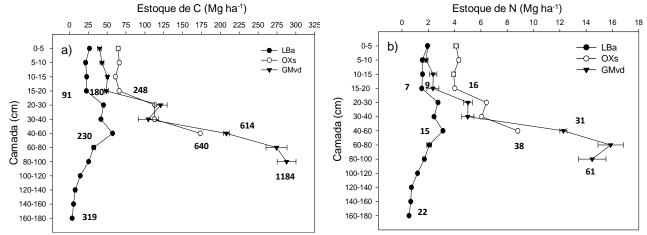


Figura 1 – Estoque de C (a) e de N (b) dos solos amostrados, com respectivos valores acumulados.-