

FertBio 2014 – Mesa Redonda

Temática Integração lavoura-pecuária-floresta

A importância de experimentos de longa duração para o manejo de sistemas integrados de produção

Ibanor Anghinoni
Departamento de Solos/UFRGS

Contextualizando a temática...

OBJETIVOS: - Detectar pequenas mudanças em uma matriz complexa de fatores

 Oportunidade de planejar exercitar a pesquisa multidisciplinar e praticar a interdisciplinar em abordagem sistêmica

CARACTERÍSTICAS:

ALTO CUSTO: Demorados (solução do problema e aplicação prática), variabilidade espaço-temporal, variação climática.

PLANEJAMENTO E CONDUÇÃO: pesquisa de menor custo benefício

BENEFÍCIOS: - aumento da produtividade

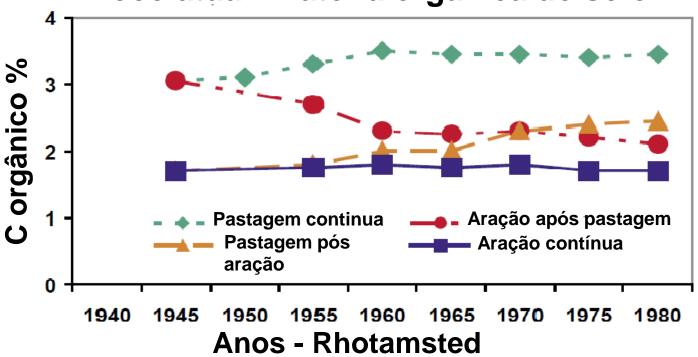
- qualidade do solo
- proteção do ambiente

Contexto internacional

Experimentos de longa duração

Local	País	Inicio	Anos
1. Rothamsted	Reino Unido	1843	171
2. Grignon	França	1875	139
3. Illinois	EUA	1876	138
4. Halle Saale	Alemanha	1878	136
5. Columbia	EUA	1888	126
6. Dakota	EUA	1892	122
7. Askov	Dinamarca	1894	120
9. Bad Laushtadt	Alemanha	1902	112
10. Dikopshot	Alemanha	1904	110

No 60º ano do Experimento de Thyrow, ocorrido em Berlin em junho de 1997, foi programada uma ação cooperativa de 14 países para manutenção e uso compreensivo dos experimentos Europeus de longa duração


Fonte: Korschens (2006)

Contexto internacional

Foco atual: matéria orgânica do solo

Indicador de qualidade do solo e de agricultura sustentável

Manejo do solo vs sequestro do carbono vs mitigação dos GEE

MUDANÇAS CLIMÁTICAS

Fonte: Andersson (2007)

Contexto brasileiro

Foco principal na década de 1970 Recomendações de adubação: experimentos de curta duração

Adubação fosfatada

Adubação potássica

Estado	Classes disp. fósforo			Classes disp. Potássio					
	M. baixo	Baixo	Médio	Alto	M. baixo	Baixo	Médio	Alto	
	P ₂ O ₅ – kg ha ⁻¹					K₂O – kg ha¹			
PA	-	60	30	0	-	40	20	0	
PE		60	30	0		30	20	0	
MG	-	70	50	0	-	45	30	20	
SP	80	50	30	20	60	45	30	20	
PR	-	70	50	35	-	50	40	25	
RS ⁽¹⁾	180	105	45	≤ 45	190	130	70	≤ 70	
⁽²⁾ Centro T1	240	160	0		100	50	0		
Oeste T2	160	80	0		100	30			

(1)Adubação corretiva + manutenção;

(2)Adubação corretiva

T1 - Argiloso; T2 = Franco a arenoso

Contexto brasileiro

A partir da década de 1960: agricultura comercial

Mecanização agrícola Insumos modernos

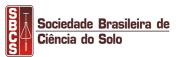
expansão e aumento da área das propriedades

Práticas nocivas:

- preparo intensivo
- sucessão trigo-soja
- queima de resíduos
- solo descoberto
- selamento superficial
- camada subsup. compactada

PRODUTIVIDADE Matéria orgânica

Contexto brasileiro



Experimentos de longa duração – sistemas conservacionistas – plantio direto

Local	Instituição	Inicio	Anos	Tipo experimento
1. Campinas –SP	IAC	1943	54	Manejo vs chuva natural
2.Eldorado do Sul-RS	UFRGS	1975	29	Manejo vs chuva natural
3. Guarapuava-PR	FA/IAPAR	1978	34	Manejo vs fertilidade solo
4. Londrina-PR	IAPAR	1981	33	Manejo vs fertilidade solo
5. Campos Gerais-PR	Fundação ABC	1982	32	Manejo vs fertilidade solo
6. Eldorado do Sul	UFRGS	1883/85	31/29	Sist. cult. vs manejo solo
7. Passo Fundo RS	Embrapa Trigo	1885	29	Sist. man. vs fert. solo
8. Pato Branco PR	IAPAR	1986	28	Sist. culturas vs manejo
9. Eldorado do Sul	UFRGS	1989	17	Sist. man. vs fert. solo
10. Planaltina DF	Embrapa Cerrados	1994	20	Manejo vs fert. solo

Fonte: Adaptado de vários autores

Sistemas de cultura e produção de resíduos

Clima	Estado	Out/Inv	Prim/Ver	Sistema de produção	Resíduo Mg/ha.ano
Temperado	RS SC PR	Aveia Azevém Ervilhaca Trigo Nabo	Milho Soja Sorgo Girassol	Aveia+ervilhaca./milho/trigo/soja Aveia+azev./soja/aveia+erv./milho	7 – 10 9 -1 2
Subtropical	RS, SC, PR SP MS	Aveia Trigo Cevada Nabo Tremoço	Milho Soja Girassol	Aveia/milho/trigo/soja Aveia/milho/aveia/soja	8 – 11 10- 12
Tropical seco Cerrado	GO MT MS MG TO	Milheto Sorgo Braquiária Estilosantes	Milho Soja Feijão Sorgo Arroz, Sorgo	Soja/milho/milho safrinha Milheto/soja/milho Milho+braquiária/soja	7 – 11 9 - 13
Tropical úmido Amazonia	MT PA RO	Sorgo Milheto Eleusena Algodão Braquiária	Milho Soja Arroz	Algodão/soja/milho Milho+Braquiária/soja	9 – 11 12 - 16

Sá et al. (2004)

DESAFIO: Produção de resíduo (carbono?!!)

Construindo a fertilidade "química" com o manejo do solo

Atributo	Original		Levantamentos/lavouras -RS				
Attibuto	Mata	Campo	Convencional		Plantio	direto	
			1967	1975	1984	2004(1)	
pH, água	5,5	4,8	4,7	5,3	5,3	6,3	
Mat. org., %	5,0	< 2,5	2,5	2,7	3,4	3,8	
P-Mehlich 1, mg dm- ³	5	< 3,0	2	12	7	15	
K-Mehlih 1, mg dm-3	70	60	55	75	70	230	

ADEQUADO: pH \geq 6,0; Mat. org. \geq 5,0%; P \geq 6,0; K \geq 60 - 90

(1)Amostragem 0-10 cm

Nicolodi (2005)

Construindo a fertilidade "plena" com manejo do solo

0 - 5 anos

Rearranjo da estrutura

Baixo teor de MOS

Baixo acúmulo de palhada

Reestabelecimento da BM

> Exigência de N

5 - 10 anos

Reagregação

Início acúmulo de palhada

Início acúmulo de MOS

Início acúmulo de P

Imob. N > Min.

10 - 20 anos

Acúmulo de palhada

Acúmulo de C

Aumento da CTC

► Retenção H₂O

Imob. N < Min.

> Ciclagem de nutrientes

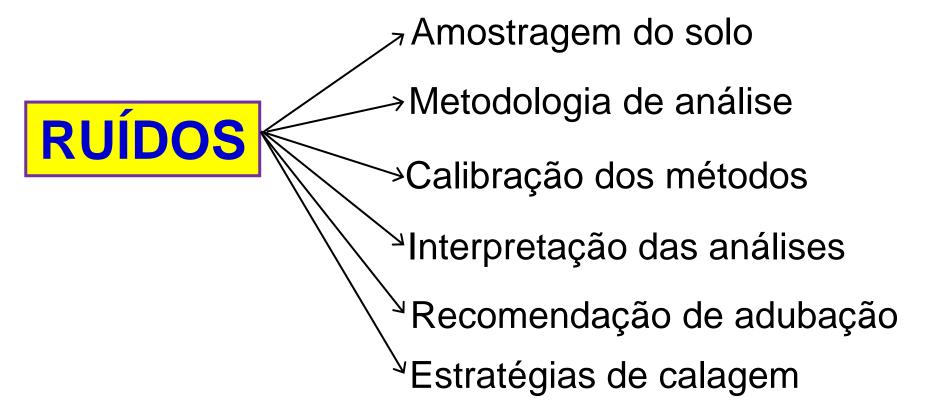
> 20 anos

Fluxo contínuo de C e N

Elevado acúmulo de palhada

- > retenção H₂O
- > Ciclagem de nutrientes
- < Exigência de N e P

Tempo - anos

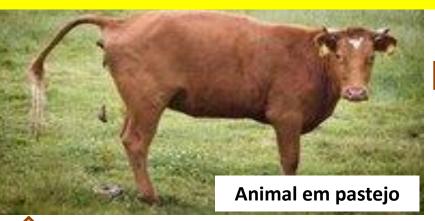

Na visão de J.C.M. Sá (1999)

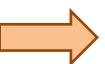
Repensando a Fertilidade do Solo

Contexto nacional

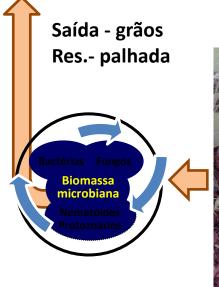
Experiências de longa duração em SIPA (ILPF)

Local	Instituição	Inicio	Anos	Sistemas
1. Uberlândia MG	Faz. Sta. Terezinha	1983	15	Soja-pecuária ⁽¹⁾
2. Piracanjuba-GO	Fazenda Barreirão	1986	5	Arroz sequeiro-pecuária ⁽¹⁾
3. Campo Grande-MS	Embrapa G. Corte	1993	16	Sist. prod manejo/fert. solo(2)
4. Dour./Maracajú-MS	Embrapa C. Oeste	1995	19	Soja/milho/trigo-pecuária ⁽²⁾
5. Guarapuava -PR	UFPR/Agrária	1996	18	Soja/milho-pecuária
6. Viamão-RS	UFRGS	1996	4	Arroz irrigado-pecuária ⁽²⁾
7. Guarapuava-PR	UFPR/Agrária	1998	16	Milho/nitrogênio-pecuária ⁽²⁾
8. Santa Helena –GO	Embrapa	2000	5	Culturas de grãos-pecuária ⁽¹⁾
9. Campo Mourão-PR	UFPR/COAMO	2000	14	Culturas de grãos-pecuária ⁽²⁾
10. São Miguel RS	UFRGS	2001	13	Soja-pecuária corte ⁽²⁾

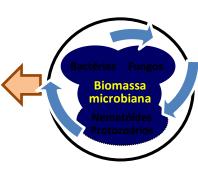

⁽¹⁾Conforme Cordeiro et al. (2012); (2)Diversos autores.

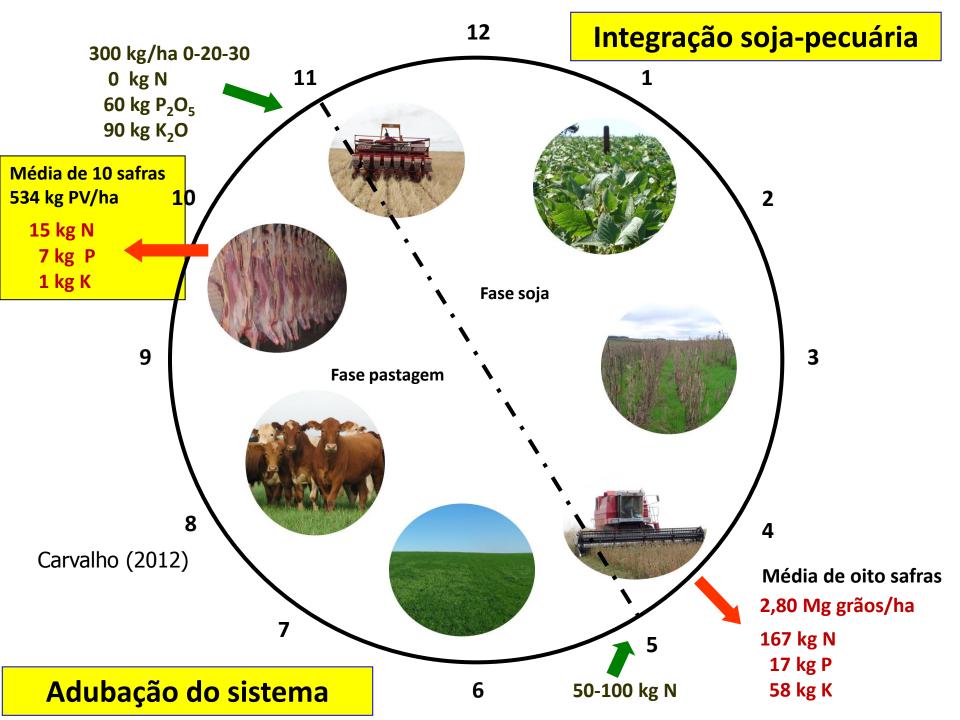


Inserção do animal no sistema



Animal como agente reciclador e dos processos de melhoria do solo em sistemas de integração lavoura-pecuária





Atividade biológica

Atividade biológica

Construindo Fertilidade do Solo com manejo

Ciclagem de nutrientes em integração soja-bovinos de corte Média 9º e 10º anos

	C	iclo pastejo	Soja			
Sistema de manejo	Pasto	Excreta ⁽¹⁾	Total		Total	
	-	kg				
	Nitrogênio (N)					
Sem pastejo	81		81	59	140	
Bom pastejo	58	21	79	57	136	
	-	Fós	sforo (P ₂ O ₅)			
Sem pastejo	17,0		17,0	15,6	32,6	
Bom pastejo	14,0	6,3	20,3	12,8	33,1	
	Potássio (K ₂ O)					
Sem pastejo	86		86	91	177	
Bom pastejo	52	70	122	82	204	

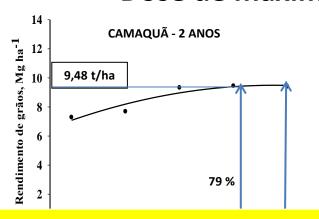
⁽¹⁾Esterco determinado em amostras coletadas no campo; a quantidade excretada pela urina foi estimada a partir de Hayes & Wilson (1993): N = 65%; P = 5%; K = 80%

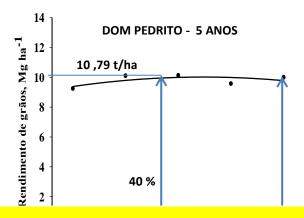
Assmann (2013)

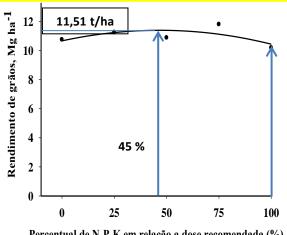
Inserção da pecuária no arroz irrigado

Experiências de longa duração

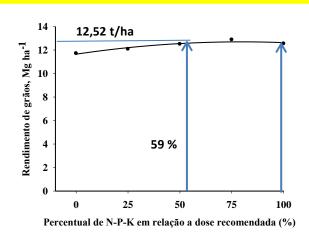
Local	Histórico	Cultivar	Test.	Adubação	Ganho
			t/ha		
Mostardas	Dois anos de pastejo em trevo branco	IRGA 424	7,29	9,44	2,20
Camaquã	Cinco anos de pastejo em trevo branco+azevém	Puitá	9,29	10,10	0,88
Dom Pedrito	Dez anos de pastejo em campo melhorado	IRGA 424	10,70	11,80	1,10
Uruguiana	Dezesseis anos de pastejo em capim Annoni	IRGA 324	11,70	12,53	0,83


Carmona et al. (2013)





Dose de máxima eficiência econômica



Diminuição da adubação em 45% para a mesma produtividade de arroz irrigado

A importância de experimentos de longa duração para o manejo de sistemas integrados de produção

CONSIDERAÇÕES FINAIS

- Importância: construção de uma fertilidade plena, menor uso de insumos e de riscos pela diversificação de renda
- 2. Necessidade de planejamento espaço-temporal por equipes multidisciplinares para uma abordagem holistica

Obrigado pela atenção ibanghi@ufrgs.br